Skip to content

docs: clarify broadcasting semantics and output shape in linalg.solve #810

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/array_api_stubs/_2022_12/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -594,12 +594,12 @@ def solve(x1: array, x2: array, /) -> array:
x1: array
coefficient array ``A`` having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Must be of full rank (i.e., all rows or, equivalently, columns must be linearly independent). Should have a floating-point data type.
x2: array
ordinate (or "dependent variable") array ``B``. If ``x2`` has shape ``(M,)``, ``x2`` is equivalent to an array having shape ``(..., M, 1)``. If ``x2`` has shape ``(..., M, K)``, each column ``k`` defines a set of ordinate values for which to compute a solution, and ``shape(x2)[:-1]`` must be compatible with ``shape(x1)[:-1]`` (see :ref:`broadcasting`). Should have a floating-point data type.
ordinate (or "dependent variable") array ``B``. If ``x2`` has shape ``(M,)``, ``x2`` is equivalent to an array having shape ``(..., M, 1)``. If ``x2`` has shape ``(..., M, K)``, each column ``k`` defines a set of ordinate values for which to compute a solution, and ``shape(x2)[:-2]`` must be compatible with ``shape(x1)[:-2]`` (see :ref:`broadcasting`). Should have a floating-point data type.

Returns
-------
out: array
an array containing the solution to the system ``AX = B`` for each square matrix. The returned array must have the same shape as ``x2`` (i.e., the array corresponding to ``B``) and must have a floating-point data type determined by :ref:`type-promotion`.
an array containing the solution to the system ``AX = B`` for each square matrix. If ``x2`` has shape ``(M,)``, the returned array must have shape equal to ``shape(x1)[:-2] + shape(x2)[-1:]``. Otherwise, if ``x2`` has shape ``(..., M, K)```, the returned array must have shape equal to ``(..., M, K)``, where ``...`` refers to the result of broadcasting ``shape(x1)[:-2]`` and ``shape(x2)[:-2]``. The returned array must have a floating-point data type determined by :ref:`type-promotion`.

Notes
-----
Expand Down
4 changes: 2 additions & 2 deletions src/array_api_stubs/_2023_12/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -623,12 +623,12 @@ def solve(x1: array, x2: array, /) -> array:
x1: array
coefficient array ``A`` having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Must be of full rank (i.e., all rows or, equivalently, columns must be linearly independent). Should have a floating-point data type.
x2: array
ordinate (or "dependent variable") array ``B``. If ``x2`` has shape ``(M,)``, ``x2`` is equivalent to an array having shape ``(..., M, 1)``. If ``x2`` has shape ``(..., M, K)``, each column ``k`` defines a set of ordinate values for which to compute a solution, and ``shape(x2)[:-1]`` must be compatible with ``shape(x1)[:-1]`` (see :ref:`broadcasting`). Should have a floating-point data type.
ordinate (or "dependent variable") array ``B``. If ``x2`` has shape ``(M,)``, ``x2`` is equivalent to an array having shape ``(..., M, 1)``. If ``x2`` has shape ``(..., M, K)``, each column ``k`` defines a set of ordinate values for which to compute a solution, and ``shape(x2)[:-2]`` must be compatible with ``shape(x1)[:-2]`` (see :ref:`broadcasting`). Should have a floating-point data type.

Returns
-------
out: array
an array containing the solution to the system ``AX = B`` for each square matrix. The returned array must have the same shape as ``x2`` (i.e., the array corresponding to ``B``) and must have a floating-point data type determined by :ref:`type-promotion`.
an array containing the solution to the system ``AX = B`` for each square matrix. If ``x2`` has shape ``(M,)``, the returned array must have shape equal to ``shape(x1)[:-2] + shape(x2)[-1:]``. Otherwise, if ``x2`` has shape ``(..., M, K)```, the returned array must have shape equal to ``(..., M, K)``, where ``...`` refers to the result of broadcasting ``shape(x1)[:-2]`` and ``shape(x2)[:-2]``. The returned array must have a floating-point data type determined by :ref:`type-promotion`.

Notes
-----
Expand Down
2 changes: 1 addition & 1 deletion src/array_api_stubs/_2023_12/manipulation_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -347,7 +347,7 @@ def tile(x: array, repetitions: Tuple[int, ...], /) -> array:

def unstack(x: array, /, *, axis: int = 0) -> Tuple[array, ...]:
"""
Splits an array in a sequence of arrays along the given axis.
Splits an array into a sequence of arrays along the given axis.

Parameters
----------
Expand Down
4 changes: 2 additions & 2 deletions src/array_api_stubs/_draft/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -623,12 +623,12 @@ def solve(x1: array, x2: array, /) -> array:
x1: array
coefficient array ``A`` having shape ``(..., M, M)`` and whose innermost two dimensions form square matrices. Must be of full rank (i.e., all rows or, equivalently, columns must be linearly independent). Should have a floating-point data type.
x2: array
ordinate (or "dependent variable") array ``B``. If ``x2`` has shape ``(M,)``, ``x2`` is equivalent to an array having shape ``(..., M, 1)``. If ``x2`` has shape ``(..., M, K)``, each column ``k`` defines a set of ordinate values for which to compute a solution, and ``shape(x2)[:-1]`` must be compatible with ``shape(x1)[:-1]`` (see :ref:`broadcasting`). Should have a floating-point data type.
ordinate (or "dependent variable") array ``B``. If ``x2`` has shape ``(M,)``, ``x2`` is equivalent to an array having shape ``(..., M, 1)``. If ``x2`` has shape ``(..., M, K)``, each column ``k`` defines a set of ordinate values for which to compute a solution, and ``shape(x2)[:-2]`` must be compatible with ``shape(x1)[:-2]`` (see :ref:`broadcasting`). Should have a floating-point data type.

Returns
-------
out: array
an array containing the solution to the system ``AX = B`` for each square matrix. The returned array must have the same shape as ``x2`` (i.e., the array corresponding to ``B``) and must have a floating-point data type determined by :ref:`type-promotion`.
an array containing the solution to the system ``AX = B`` for each square matrix. If ``x2`` has shape ``(M,)``, the returned array must have shape equal to ``shape(x1)[:-2] + shape(x2)[-1:]``. Otherwise, if ``x2`` has shape ``(..., M, K)```, the returned array must have shape equal to ``(..., M, K)``, where ``...`` refers to the result of broadcasting ``shape(x1)[:-2]`` and ``shape(x2)[:-2]``. The returned array must have a floating-point data type determined by :ref:`type-promotion`.

Notes
-----
Expand Down
2 changes: 1 addition & 1 deletion src/array_api_stubs/_draft/manipulation_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -347,7 +347,7 @@ def tile(x: array, repetitions: Tuple[int, ...], /) -> array:

def unstack(x: array, /, *, axis: int = 0) -> Tuple[array, ...]:
"""
Splits an array in a sequence of arrays along the given axis.
Splits an array into a sequence of arrays along the given axis.

Parameters
----------
Expand Down
Loading