You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv
+2-2
Original file line number
Diff line number
Diff line change
@@ -62,14 +62,14 @@ Trainers.LogisticRegressionBinaryClassifier Logistic Regression is a method in s
62
62
Trainers.LogisticRegressionClassifierLogistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function.Microsoft.ML.Trainers.LogisticRegressionTrainMultiClassMicrosoft.ML.Trainers.MulticlassLogisticRegression+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
63
63
Trainers.NaiveBayesClassifierTrain a MultiClassNaiveBayesTrainer.Microsoft.ML.Trainers.MultiClassNaiveBayesTrainerTrainMultiClassNaiveBayesTrainerMicrosoft.ML.Trainers.MultiClassNaiveBayesTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
64
64
Trainers.OnlineGradientDescentRegressorTrain a Online gradient descent perceptron.Microsoft.ML.Trainers.OnlineGradientDescentTrainerTrainRegressionMicrosoft.ML.Trainers.OnlineGradientDescentTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
65
-
Trainers.OrdinaryLeastSquaresRegressorTrain an OLS regression model.Microsoft.ML.Trainers.OlsLinearRegressionTrainerTrainRegressionMicrosoft.ML.Trainers.OlsLinearRegressionTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
65
+
Trainers.OrdinaryLeastSquaresRegressorTrain an OLS regression model.Microsoft.ML.Trainers.OrdinaryLeastSquaresRegressionTrainerTrainRegressionMicrosoft.ML.Trainers.OrdinaryLeastSquaresRegressionTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
66
66
Trainers.PcaAnomalyDetectorTrain an PCA Anomaly model.Microsoft.ML.Trainers.RandomizedPcaTrainerTrainPcaAnomalyMicrosoft.ML.Trainers.RandomizedPcaTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+AnomalyDetectionOutput
67
67
Trainers.PoissonRegressorTrain an Poisson regression model.Microsoft.ML.Trainers.PoissonRegressionTrainRegressionMicrosoft.ML.Trainers.PoissonRegression+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
68
68
Trainers.StochasticDualCoordinateAscentBinaryClassifierTrain an SDCA binary model.Microsoft.ML.Trainers.SdcaTrainBinaryMicrosoft.ML.Trainers.LegacySdcaBinaryTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
69
69
Trainers.StochasticDualCoordinateAscentClassifierThe SDCA linear multi-class classification trainer.Microsoft.ML.Trainers.SdcaTrainMultiClassMicrosoft.ML.Trainers.SdcaMultiClassTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
70
70
Trainers.StochasticDualCoordinateAscentRegressorThe SDCA linear regression trainer.Microsoft.ML.Trainers.SdcaTrainRegressionMicrosoft.ML.Trainers.SdcaRegressionTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
71
71
Trainers.StochasticGradientDescentBinaryClassifierTrain an Hogwild SGD binary model.Microsoft.ML.Trainers.LegacySgdBinaryTrainerTrainBinaryMicrosoft.ML.Trainers.LegacySgdBinaryTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
72
-
Trainers.SymSgdBinaryClassifierTrain a symbolic SGD.Microsoft.ML.Trainers.SymSgdClassificationTrainerTrainSymSgdMicrosoft.ML.Trainers.SymSgdClassificationTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
72
+
Trainers.SymSgdBinaryClassifierTrain a symbolic SGD.Microsoft.ML.Trainers.SymbolicStochasticGradientDescentClassificationTrainerTrainSymSgdMicrosoft.ML.Trainers.SymbolicStochasticGradientDescentClassificationTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
Transforms.BinaryPredictionScoreColumnsRenamerFor binary prediction, it renames the PredictedLabel and Score columns to include the name of the positive class.Microsoft.ML.EntryPoints.ScoreModelRenameBinaryPredictionScoreColumnsMicrosoft.ML.EntryPoints.ScoreModel+RenameBinaryPredictionScoreColumnsInputMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
75
75
Transforms.BinNormalizerThe values are assigned into equidensity bins and a value is mapped to its bin_number/number_of_bins.Microsoft.ML.Data.NormalizeBinMicrosoft.ML.Transforms.NormalizeTransform+BinArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
0 commit comments