You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -2170,21 +2170,43 @@ private protected override void CheckLabel(RoleMappedData examples, out int weig
2170
2170
}
2171
2171
2172
2172
/// <summary>
2173
-
/// The<see cref="IEstimator{TTransformer}"/> for training logistic regression using a parallel stochastic gradient method.
2173
+
/// The<see cref="IEstimator{TTransformer}"/> for training logistic regression using a parallel stochastic gradient method.
2174
2174
/// The trained model is <a href='https://en.wikipedia.org/wiki/Calibration_(statistics)'>calibrated</a> and can produce probability by feeding the output value of the
2175
2175
/// linear function to a <see cref="PlattCalibrator"/>.
2176
2176
/// </summary>
2177
2177
/// <remarks>
2178
+
/// <format type="text/markdown"><)
2180
+
/// or [SgdCalibrated(Options)](xref:Microsoft.ML.StandardTrainersCatalog.SgdCalibrated(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,Microsoft.ML.Trainers.SgdCalibratedTrainer.Options)).
/// <see cref="SgdNonCalibratedTrainer"/> can train a linear classification model by minimizing any loss function
2244
-
/// which implements <see cref="IClassificationLoss"/>.
2265
+
/// The <see cref="IEstimator{TTransformer}"/> for training logistic regression using a parallel stochastic gradient method.
2245
2266
/// </summary>
2267
+
/// <remarks>
2268
+
/// <format type="text/markdown"><)
2270
+
/// or [SgdNonCalibrated(Options)](xref:Microsoft.ML.StandardTrainersCatalog.SgdNonCalibrated(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,Microsoft.ML.Trainers.SgdNonCalibratedTrainer.Options)).
/// <param name="labelColumnName">The name of the label column, or dependent variable.</param>
25
-
/// <param name="featureColumnName">The features, or independent variables.</param>
24
+
/// <param name="labelColumnName">The name of the label column, or dependent variable. The column data must be <see cref="System.Boolean"/>.</param>
25
+
/// <param name="featureColumnName">The features, or independent variables. The column data must be a known-sized vector of <see cref="System.Single"/></param>
26
26
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
27
27
/// <param name="numberOfIterations">The maximum number of passes through the training dataset; set to 1 to simulate online learning.</param>
28
28
/// <param name="learningRate">The initial learning rate used by SGD.</param>
@@ -49,7 +49,7 @@ public static SgdCalibratedTrainer SgdCalibrated(this BinaryClassificationCatalo
49
49
}
50
50
51
51
/// <summary>
52
-
/// Predict a target using a linear classification model trained with <see cref="SgdCalibratedTrainer"/> and advanced options.
52
+
/// Creates a <see cref="Trainers.SgdCalibratedTrainer"/> that predicts a target using a linear classification model and advanced options.
53
53
/// Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
/// <param name="labelColumnName">The name of the label column, or dependent variable.</param>
80
-
/// <param name="featureColumnName">The features, or independent variables.</param>
79
+
/// <param name="labelColumnName">The name of the label column, or dependent variable. The column data must be <see cref="System.Boolean"/>.</param>
80
+
/// <param name="featureColumnName">The features, or independent variables. The column data must be a known-sized vector of <see cref="System.Single"/></param>
81
81
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
82
82
/// <param name="lossFunction">The <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a> function minimized in the training process. Using, for example, <see cref="HingeLoss"/> leads to a support vector machine trainer.</param>
83
83
/// <param name="numberOfIterations">The maximum number of passes through the training dataset; set to 1 to simulate online learning.</param>
@@ -106,7 +106,7 @@ public static SgdNonCalibratedTrainer SgdNonCalibrated(this BinaryClassification
106
106
}
107
107
108
108
/// <summary>
109
-
/// Predict a target using a linear classification model trained with <see cref="SgdNonCalibratedTrainer"/> and advanced options.
109
+
/// Creates a <see cref="Trainers.SgdNonCalibratedTrainer"/> that predicts a target using a linear classification model and advanced options.
110
110
/// Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
0 commit comments