You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/api-reference/io-columns-multiclass-classification.md
+1-1
Original file line number
Diff line number
Diff line change
@@ -1,5 +1,5 @@
1
1
### Input and Output Columns
2
-
The input label column data must be [key-typed](xref:Microsoft.ML.Data.KeyDataViewType) and the feature column must be a known-sized vector of <xref:System.Single>.
2
+
The input label column data must be [key](xref:Microsoft.ML.Data.KeyDataViewType) type and the feature column must be a known-sized vector of <xref:System.Single>.
Copy file name to clipboardExpand all lines: docs/api-reference/io-columns-ranking.md
+1-2
Original file line number
Diff line number
Diff line change
@@ -1,6 +1,5 @@
1
1
### Input and Output Columns
2
-
The input label column data must be <xref:System.Single> and input group column
3
-
data must be <xref:System.UInt32>. This trainer outputs the following columns:
2
+
The input label data type must be [key](xref:Microsoft.ML.Data.KeyDataViewType) type or <xref:System.Single>. The value of the label determines relevance, where higher values indicate higher relevance. If the label is a [key](xref:Microsoft.ML.Data.KeyDataViewType) type, then the key index is the relevance value, where the 0-index is the least relevant. If the label is a <xref:System.Single>, larger values indicate higher relevance. The feature column must be a known-sized vector of <xref:System.Single> and input row group column must be [key](xref:Microsoft.ML.Data.KeyDataViewType) type. This trainer outputs the following columns:
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/>.</param>
130
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/> or <see cref="KeyDataViewType"/>.</param>
131
131
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
132
132
/// <param name="rowGroupColumnName">The name of the group column.</param>
133
133
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/>.</param>
126
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/> or <see cref="KeyDataViewType"/>.</param>
127
127
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
128
128
/// <param name="rowGroupColumnName">The name of the group column.</param>
129
129
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
@@ -178,8 +178,8 @@ public static LightGbmRankingTrainer LightGbm(this RankingCatalog.RankingTrainer
178
178
/// Create <see cref="LightGbmMulticlassTrainer"/>, which predicts a target using a gradient boosting decision tree multiclass classification model.
/// <param name="labelColumnName">The name of the label column.</param>
182
-
/// <param name="featureColumnName">The name of the feature column.</param>
181
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="KeyDataViewType"/>.</param>
182
+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
183
183
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
184
184
/// <param name="numberOfLeaves">The maximum number of leaves in one tree.</param>
185
185
/// <param name="minimumExampleCountPerLeaf">The minimal number of data points required to form a new tree leaf.</param>
/// <param name="labelColumnName">Label column name. The column data must be <see cref="System.Single"/>.</param>
57
57
/// <param name="useFeatureWeightFilter">Use features weight to pre-filter features.</param>
58
58
/// <param name="numberOfExamplesToUse">Limit the number of examples to evaluate on. <cref langword="null"/> means up to ~2 bln examples from <paramref param="data"/> will be used.</param>
59
59
/// <param name="permutationCount">The number of permutations to perform.</param>
/// <param name="labelColumnName">Label column name. The column data must be <see cref="System.Boolean"/>.</param>
133
133
/// <param name="useFeatureWeightFilter">Use features weight to pre-filter features.</param>
134
134
/// <param name="numberOfExamplesToUse">Limit the number of examples to evaluate on. <cref langword="null"/> means up to ~2 bln examples from <paramref param="data"/> will be used.</param>
135
135
/// <param name="permutationCount">The number of permutations to perform.</param>
/// <param name="labelColumnName">Label column name. The column data must be <see cref="KeyDataViewType"/>.</param>
213
213
/// <param name="useFeatureWeightFilter">Use features weight to pre-filter features.</param>
214
214
/// <param name="numberOfExamplesToUse">Limit the number of examples to evaluate on. <cref langword="null"/> means up to ~2 bln examples from <paramref param="data"/> will be used.</param>
215
215
/// <param name="permutationCount">The number of permutations to perform.</param>
/// <param name="useFeatureWeightFilter">Use features weight to pre-filter features.</param>
300
300
/// <param name="numberOfExamplesToUse">Limit the number of examples to evaluate on. <cref langword="null"/> means up to ~2 bln examples from <paramref param="data"/> will be used.</param>
0 commit comments