Skip to content

XML documentation for FastTree Tweedie trainer. #3414

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 20, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/Microsoft.ML.FastTree/FastTreeArguments.cs
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,8 @@ public Options()
public sealed partial class FastTreeTweedieTrainer
{
/// <summary>
/// Options for the <see cref="FastTreeTweedieTrainer"/>.
/// Options for the <see cref="FastTreeTweedieTrainer"/> as used in
/// [FastTreeTweedie(Options)](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options)).
/// </summary>
[TlcModule.Component(Name = LoadNameValue, FriendlyName = UserNameValue, Desc = Summary)]
public sealed class Options : BoostedTreeOptions, IFastTreeTrainerFactory
Expand Down
28 changes: 24 additions & 4 deletions src/Microsoft.ML.FastTree/FastTreeTweedie.cs
Original file line number Diff line number Diff line change
Expand Up @@ -30,12 +30,32 @@ namespace Microsoft.ML.Trainers.FastTree
/// This trainer is a generalization of Poisson, compound Poisson, and gamma regression.
/// </summary>
/// <remarks>
/// The Tweedie boosting model follows the mathematics established in <a href="https://arxiv.org/pdf/1508.06378.pdf">
/// Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models</a> from Yang, Quan, and Zou.
/// <format type="text/markdown"><![CDATA[
/// To create this trainer, use [FastTreeTweedie](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,System.String,System.String,System.String,System.Int32,System.Int32,System.Int32,System.Double))
/// or [FastTreeTweedie(Options)](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options)).
///
/// [!include[io](~/../docs/samples/docs/api-reference/io-columns-regression.md)]
///
/// ### Trainer Characteristics
/// | | |
/// | -- | -- |
/// | Machine learning task | Regression |
/// | Is normalization required? | No |
/// | Is caching required? | No |
/// | Required NuGet in addition to Microsoft.ML | Microsoft.ML.FastTree |
///
/// ### Training Algorithm Details
/// The Tweedie boosting model follows the mathematics established in
/// [Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models</a> from Yang, Quan, and Zou](https://arxiv.org/pdf/1508.06378.pdf).
/// For an introduction to Gradient Boosting, and more information, see:
/// <a href='https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting'> Wikipedia: Gradient boosting(Gradient tree boosting)</a> or
/// <a href='https://projecteuclid.org/DPubS?service=UI&amp;version=1.0&amp;verb=Display&amp;handle=euclid.aos/1013203451'> Greedy function approximation: A gradient boosting machine</a>.
/// [Wikipedia: Gradient boosting(Gradient tree boosting)](https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting) or
/// [Greedy function approximation: A gradient boosting machine](https://projecteuclid.org/DPubS?service=UI&amp;version=1.0&amp;verb=Display&amp;handle=euclid.aos/1013203451).
/// ]]>
/// </format>
/// </remarks>
/// <seealso cref="TreeExtensions.FastTreeTweedie(RegressionCatalog.RegressionTrainers, string, string, string, int, int, int, double)"/>
/// <seealso cref="TreeExtensions.FastTreeTweedie(RegressionCatalog.RegressionTrainers, FastTreeTweedieTrainer.Options)"/>
/// <seealso cref="Options"/>
public sealed partial class FastTreeTweedieTrainer
: BoostingFastTreeTrainerBase<FastTreeTweedieTrainer.Options, RegressionPredictionTransformer<FastTreeTweedieModelParameters>, FastTreeTweedieModelParameters>
{
Expand Down
8 changes: 4 additions & 4 deletions src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs
Original file line number Diff line number Diff line change
Expand Up @@ -278,11 +278,11 @@ public static GamRegressionTrainer Gam(this RegressionCatalog.RegressionTrainers
}

/// <summary>
/// Predict a target using a decision tree regression model trained with the <see cref="FastTreeTweedieTrainer"/>.
/// Create <see cref="FastTreeTweedieTrainer"/>, which predicts a target using a decision tree regression model.
/// </summary>
/// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
/// <param name="labelColumnName">The name of the label column.</param>
/// <param name="featureColumnName">The name of the feature column.</param>
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/>.</param>
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
/// <param name="numberOfTrees">Total number of decision trees to create in the ensemble.</param>
/// <param name="numberOfLeaves">The maximum number of leaves per decision tree.</param>
Expand Down Expand Up @@ -310,7 +310,7 @@ public static FastTreeTweedieTrainer FastTreeTweedie(this RegressionCatalog.Regr
}

/// <summary>
/// Predict a target using a decision tree regression model trained with the <see cref="FastTreeTweedieTrainer"/> and advanced options.
/// Create <see cref="FastTreeTweedieTrainer"/> using advanced options, which predicts a target using a decision tree regression model.
/// </summary>
/// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
/// <param name="options">Trainer options.</param>
Expand Down