Skip to content

Implement accuracy metric for multiclass classification #47772

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Nov 21, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
*/
package org.elasticsearch.client.ml.dataframe.evaluation;

import org.elasticsearch.client.ml.dataframe.evaluation.classification.AccuracyMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.Classification;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.MeanSquaredErrorMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.MulticlassConfusionMatrixMetric;
Expand Down Expand Up @@ -51,6 +52,8 @@ Evaluation.class, new ParseField(BinarySoftClassification.NAME), BinarySoftClass
new NamedXContentRegistry.Entry(EvaluationMetric.class, new ParseField(RecallMetric.NAME), RecallMetric::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.class, new ParseField(ConfusionMatrixMetric.NAME), ConfusionMatrixMetric::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.class, new ParseField(AccuracyMetric.NAME), AccuracyMetric::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.class,
new ParseField(MulticlassConfusionMatrixMetric.NAME),
Expand All @@ -68,6 +71,8 @@ EvaluationMetric.Result.class, new ParseField(PrecisionMetric.NAME), PrecisionMe
EvaluationMetric.Result.class, new ParseField(RecallMetric.NAME), RecallMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(ConfusionMatrixMetric.NAME), ConfusionMatrixMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(AccuracyMetric.NAME), AccuracyMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class,
new ParseField(MulticlassConfusionMatrixMetric.NAME),
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.client.ml.dataframe.evaluation.classification;

import org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric;
import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.xcontent.ConstructingObjectParser;
import org.elasticsearch.common.xcontent.ObjectParser;
import org.elasticsearch.common.xcontent.ToXContent;
import org.elasticsearch.common.xcontent.ToXContentObject;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentParser;

import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.Objects;

import static org.elasticsearch.common.xcontent.ConstructingObjectParser.constructorArg;

/**
* {@link AccuracyMetric} is a metric that answers the question:
* "What fraction of examples have been classified correctly by the classifier?"
*
* equation: accuracy = 1/n * Σ(y == y´)
*/
public class AccuracyMetric implements EvaluationMetric {

public static final String NAME = "accuracy";

private static final ObjectParser<AccuracyMetric, Void> PARSER = new ObjectParser<>(NAME, true, AccuracyMetric::new);

public static AccuracyMetric fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}

public AccuracyMetric() {}

@Override
public String getName() {
return NAME;
}

@Override
public XContentBuilder toXContent(XContentBuilder builder, ToXContent.Params params) throws IOException {
builder.startObject();
builder.endObject();
return builder;
}

@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
return true;
}

@Override
public int hashCode() {
return Objects.hashCode(NAME);
}

public static class Result implements EvaluationMetric.Result {

private static final ParseField ACTUAL_CLASSES = new ParseField("actual_classes");
private static final ParseField OVERALL_ACCURACY = new ParseField("overall_accuracy");

@SuppressWarnings("unchecked")
private static final ConstructingObjectParser<Result, Void> PARSER =
new ConstructingObjectParser<>("accuracy_result", true, a -> new Result((List<ActualClass>) a[0], (double) a[1]));

static {
PARSER.declareObjectArray(constructorArg(), ActualClass.PARSER, ACTUAL_CLASSES);
PARSER.declareDouble(constructorArg(), OVERALL_ACCURACY);
}

public static Result fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}

/** List of actual classes. */
private final List<ActualClass> actualClasses;
/** Fraction of documents predicted correctly. */
private final double overallAccuracy;

public Result(List<ActualClass> actualClasses, double overallAccuracy) {
this.actualClasses = Collections.unmodifiableList(Objects.requireNonNull(actualClasses));
this.overallAccuracy = overallAccuracy;
}

@Override
public String getMetricName() {
return NAME;
}

public List<ActualClass> getActualClasses() {
return actualClasses;
}

public double getOverallAccuracy() {
return overallAccuracy;
}

@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.field(ACTUAL_CLASSES.getPreferredName(), actualClasses);
builder.field(OVERALL_ACCURACY.getPreferredName(), overallAccuracy);
builder.endObject();
return builder;
}

@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Result that = (Result) o;
return Objects.equals(this.actualClasses, that.actualClasses)
&& this.overallAccuracy == that.overallAccuracy;
}

@Override
public int hashCode() {
return Objects.hash(actualClasses, overallAccuracy);
}
}

public static class ActualClass implements ToXContentObject {

private static final ParseField ACTUAL_CLASS = new ParseField("actual_class");
private static final ParseField ACTUAL_CLASS_DOC_COUNT = new ParseField("actual_class_doc_count");
private static final ParseField ACCURACY = new ParseField("accuracy");

@SuppressWarnings("unchecked")
private static final ConstructingObjectParser<ActualClass, Void> PARSER =
new ConstructingObjectParser<>("accuracy_actual_class", true, a -> new ActualClass((String) a[0], (long) a[1], (double) a[2]));

static {
PARSER.declareString(constructorArg(), ACTUAL_CLASS);
PARSER.declareLong(constructorArg(), ACTUAL_CLASS_DOC_COUNT);
PARSER.declareDouble(constructorArg(), ACCURACY);
}

/** Name of the actual class. */
private final String actualClass;
/** Number of documents (examples) belonging to the {code actualClass} class. */
private final long actualClassDocCount;
/** Fraction of documents belonging to the {code actualClass} class predicted correctly. */
private final double accuracy;

public ActualClass(
String actualClass, long actualClassDocCount, double accuracy) {
this.actualClass = Objects.requireNonNull(actualClass);
this.actualClassDocCount = actualClassDocCount;
this.accuracy = accuracy;
}

public String getActualClass() {
return actualClass;
}

public long getActualClassDocCount() {
return actualClassDocCount;
}

public double getAccuracy() {
return accuracy;
}

@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
builder.field(ACTUAL_CLASS.getPreferredName(), actualClass);
builder.field(ACTUAL_CLASS_DOC_COUNT.getPreferredName(), actualClassDocCount);
builder.field(ACCURACY.getPreferredName(), accuracy);
builder.endObject();
return builder;
}

@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
ActualClass that = (ActualClass) o;
return Objects.equals(this.actualClass, that.actualClass)
&& this.actualClassDocCount == that.actualClassDocCount
&& this.accuracy == that.accuracy;
}

@Override
public int hashCode() {
return Objects.hash(actualClass, actualClassDocCount, accuracy);
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,7 @@
import org.elasticsearch.client.ml.dataframe.OutlierDetection;
import org.elasticsearch.client.ml.dataframe.PhaseProgress;
import org.elasticsearch.client.ml.dataframe.QueryConfig;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.AccuracyMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.Classification;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.MulticlassConfusionMatrixMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.MulticlassConfusionMatrixMetric.ActualClass;
Expand Down Expand Up @@ -1783,6 +1784,27 @@ public void testEvaluateDataFrame_Classification() throws IOException {

MachineLearningClient machineLearningClient = highLevelClient().machineLearning();

{ // Accuracy
EvaluateDataFrameRequest evaluateDataFrameRequest =
new EvaluateDataFrameRequest(
indexName, null, new Classification(actualClassField, predictedClassField, new AccuracyMetric()));

EvaluateDataFrameResponse evaluateDataFrameResponse =
execute(evaluateDataFrameRequest, machineLearningClient::evaluateDataFrame, machineLearningClient::evaluateDataFrameAsync);
assertThat(evaluateDataFrameResponse.getEvaluationName(), equalTo(Classification.NAME));
assertThat(evaluateDataFrameResponse.getMetrics().size(), equalTo(1));

AccuracyMetric.Result accuracyResult = evaluateDataFrameResponse.getMetricByName(AccuracyMetric.NAME);
assertThat(accuracyResult.getMetricName(), equalTo(AccuracyMetric.NAME));
assertThat(
accuracyResult.getActualClasses(),
equalTo(
List.of(
new AccuracyMetric.ActualClass("cat", 5, 0.6), // 3 out of 5 examples labeled as "cat" were classified correctly
new AccuracyMetric.ActualClass("dog", 4, 0.75), // 3 out of 4 examples labeled as "dog" were classified correctly
new AccuracyMetric.ActualClass("ant", 1, 0.0)))); // no examples labeled as "ant" were classified correctly
assertThat(accuracyResult.getOverallAccuracy(), equalTo(0.6)); // 6 out of 10 examples were classified correctly
}
{ // No size provided for MulticlassConfusionMatrixMetric, default used instead
EvaluateDataFrameRequest evaluateDataFrameRequest =
new EvaluateDataFrameRequest(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@
import org.elasticsearch.client.ilm.UnfollowAction;
import org.elasticsearch.client.ml.dataframe.DataFrameAnalysis;
import org.elasticsearch.client.ml.dataframe.OutlierDetection;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.AccuracyMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.Classification;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.MeanSquaredErrorMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.MulticlassConfusionMatrixMetric;
Expand Down Expand Up @@ -687,7 +688,7 @@ public void testDefaultNamedXContents() {

public void testProvidedNamedXContents() {
List<NamedXContentRegistry.Entry> namedXContents = RestHighLevelClient.getProvidedNamedXContents();
assertEquals(49, namedXContents.size());
assertEquals(51, namedXContents.size());
Map<Class<?>, Integer> categories = new HashMap<>();
List<String> names = new ArrayList<>();
for (NamedXContentRegistry.Entry namedXContent : namedXContents) {
Expand Down Expand Up @@ -729,21 +730,23 @@ public void testProvidedNamedXContents() {
assertTrue(names.contains(TimeSyncConfig.NAME));
assertEquals(Integer.valueOf(3), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.Evaluation.class));
assertThat(names, hasItems(BinarySoftClassification.NAME, Classification.NAME, Regression.NAME));
assertEquals(Integer.valueOf(7), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric.class));
assertEquals(Integer.valueOf(8), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric.class));
assertThat(names,
hasItems(AucRocMetric.NAME,
PrecisionMetric.NAME,
RecallMetric.NAME,
ConfusionMatrixMetric.NAME,
AccuracyMetric.NAME,
MulticlassConfusionMatrixMetric.NAME,
MeanSquaredErrorMetric.NAME,
RSquaredMetric.NAME));
assertEquals(Integer.valueOf(7), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric.Result.class));
assertEquals(Integer.valueOf(8), categories.get(org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric.Result.class));
assertThat(names,
hasItems(AucRocMetric.NAME,
PrecisionMetric.NAME,
RecallMetric.NAME,
ConfusionMatrixMetric.NAME,
AccuracyMetric.NAME,
MulticlassConfusionMatrixMetric.NAME,
MeanSquaredErrorMetric.NAME,
RSquaredMetric.NAME));
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,7 @@
import org.elasticsearch.client.ml.dataframe.QueryConfig;
import org.elasticsearch.client.ml.dataframe.evaluation.Evaluation;
import org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.AccuracyMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.MulticlassConfusionMatrixMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.MulticlassConfusionMatrixMetric.ActualClass;
import org.elasticsearch.client.ml.dataframe.evaluation.classification.MulticlassConfusionMatrixMetric.PredictedClass;
Expand Down Expand Up @@ -3347,20 +3348,27 @@ public void testEvaluateDataFrame_Classification() throws Exception {
"actual_class", // <2>
"predicted_class", // <3>
// Evaluation metrics // <4>
new MulticlassConfusionMatrixMetric(3)); // <5>
new AccuracyMetric(), // <5>
new MulticlassConfusionMatrixMetric(3)); // <6>
// end::evaluate-data-frame-evaluation-classification

EvaluateDataFrameRequest request = new EvaluateDataFrameRequest(indexName, null, evaluation);
EvaluateDataFrameResponse response = client.machineLearning().evaluateDataFrame(request, RequestOptions.DEFAULT);

// tag::evaluate-data-frame-results-classification
AccuracyMetric.Result accuracyResult = response.getMetricByName(AccuracyMetric.NAME); // <1>
double accuracy = accuracyResult.getOverallAccuracy(); // <2>

MulticlassConfusionMatrixMetric.Result multiclassConfusionMatrix =
response.getMetricByName(MulticlassConfusionMatrixMetric.NAME); // <1>
response.getMetricByName(MulticlassConfusionMatrixMetric.NAME); // <3>

List<ActualClass> confusionMatrix = multiclassConfusionMatrix.getConfusionMatrix(); // <2>
long otherClassesCount = multiclassConfusionMatrix.getOtherActualClassCount(); // <3>
List<ActualClass> confusionMatrix = multiclassConfusionMatrix.getConfusionMatrix(); // <4>
long otherClassesCount = multiclassConfusionMatrix.getOtherActualClassCount(); // <5>
// end::evaluate-data-frame-results-classification

assertThat(accuracyResult.getMetricName(), equalTo(AccuracyMetric.NAME));
assertThat(accuracy, equalTo(0.6));

assertThat(multiclassConfusionMatrix.getMetricName(), equalTo(MulticlassConfusionMatrixMetric.NAME));
assertThat(
confusionMatrix,
Expand Down
Loading