Skip to content

Assert on evaluation results after classification analysis in tests. #48626

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -322,6 +322,18 @@ public ActualClass(StreamInput in) throws IOException {
this.otherPredictedClassDocCount = in.readVLong();
}

public String getActualClass() {
return actualClass;
}

public List<PredictedClass> getPredictedClasses() {
return predictedClasses;
}

public long getOtherPredictedClassDocCount() {
return otherPredictedClassDocCount;
}

@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeString(actualClass);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,8 @@ public void cleanup() {
}

public void testEvaluate_MulticlassClassification_DefaultMetrics() {
EvaluateDataFrameAction.Request evaluateDataFrameRequest =
new EvaluateDataFrameAction.Request()
.setIndices(List.of(ANIMALS_DATA_INDEX))
.setEvaluation(new Classification(ACTUAL_CLASS_FIELD, PREDICTED_CLASS_FIELD, null));

EvaluateDataFrameAction.Response evaluateDataFrameResponse =
client().execute(EvaluateDataFrameAction.INSTANCE, evaluateDataFrameRequest).actionGet();
evaluateDataFrame(ANIMALS_DATA_INDEX, new Classification(ACTUAL_CLASS_FIELD, PREDICTED_CLASS_FIELD, null));

assertThat(evaluateDataFrameResponse.getEvaluationName(), equalTo(Classification.NAME.getPreferredName()));
assertThat(evaluateDataFrameResponse.getMetrics().size(), equalTo(1));
Expand Down Expand Up @@ -104,13 +99,10 @@ public void testEvaluate_MulticlassClassification_DefaultMetrics() {
}

public void testEvaluate_MulticlassClassification_ConfusionMatrixMetricWithDefaultSize() {
EvaluateDataFrameAction.Request evaluateDataFrameRequest =
new EvaluateDataFrameAction.Request()
.setIndices(List.of(ANIMALS_DATA_INDEX))
.setEvaluation(new Classification(ACTUAL_CLASS_FIELD, PREDICTED_CLASS_FIELD, List.of(new MulticlassConfusionMatrix())));

EvaluateDataFrameAction.Response evaluateDataFrameResponse =
client().execute(EvaluateDataFrameAction.INSTANCE, evaluateDataFrameRequest).actionGet();
evaluateDataFrame(
ANIMALS_DATA_INDEX,
new Classification(ACTUAL_CLASS_FIELD, PREDICTED_CLASS_FIELD, List.of(new MulticlassConfusionMatrix())));

assertThat(evaluateDataFrameResponse.getEvaluationName(), equalTo(Classification.NAME.getPreferredName()));
assertThat(evaluateDataFrameResponse.getMetrics().size(), equalTo(1));
Expand Down Expand Up @@ -169,13 +161,10 @@ public void testEvaluate_MulticlassClassification_ConfusionMatrixMetricWithDefau
}

public void testEvaluate_MulticlassClassification_ConfusionMatrixMetricWithUserProvidedSize() {
EvaluateDataFrameAction.Request evaluateDataFrameRequest =
new EvaluateDataFrameAction.Request()
.setIndices(List.of(ANIMALS_DATA_INDEX))
.setEvaluation(new Classification(ACTUAL_CLASS_FIELD, PREDICTED_CLASS_FIELD, List.of(new MulticlassConfusionMatrix(3))));

EvaluateDataFrameAction.Response evaluateDataFrameResponse =
client().execute(EvaluateDataFrameAction.INSTANCE, evaluateDataFrameRequest).actionGet();
evaluateDataFrame(
ANIMALS_DATA_INDEX,
new Classification(ACTUAL_CLASS_FIELD, PREDICTED_CLASS_FIELD, List.of(new MulticlassConfusionMatrix(3))));

assertThat(evaluateDataFrameResponse.getEvaluationName(), equalTo(Classification.NAME.getPreferredName()));
assertThat(evaluateDataFrameResponse.getMetrics().size(), equalTo(1));
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,13 @@
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.support.WriteRequest;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.xpack.core.ml.action.EvaluateDataFrameAction;
import org.elasticsearch.xpack.core.ml.dataframe.DataFrameAnalyticsConfig;
import org.elasticsearch.xpack.core.ml.dataframe.analyses.BoostedTreeParamsTests;
import org.elasticsearch.xpack.core.ml.dataframe.analyses.Classification;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.classification.MulticlassConfusionMatrix;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.classification.MulticlassConfusionMatrix.ActualClass;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.classification.MulticlassConfusionMatrix.PredictedClass;
import org.junit.After;

import java.util.ArrayList;
Expand All @@ -28,6 +32,7 @@
import java.util.Map;
import java.util.function.Function;

import static java.util.stream.Collectors.toList;
import static org.hamcrest.Matchers.allOf;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.greaterThan;
Expand All @@ -48,7 +53,7 @@ public class ClassificationIT extends MlNativeDataFrameAnalyticsIntegTestCase {
private static final List<Boolean> BOOLEAN_FIELD_VALUES = Collections.unmodifiableList(Arrays.asList(false, true));
private static final List<Double> NUMERICAL_FIELD_VALUES = Collections.unmodifiableList(Arrays.asList(1.0, 2.0));
private static final List<Integer> DISCRETE_NUMERICAL_FIELD_VALUES = Collections.unmodifiableList(Arrays.asList(10, 20));
private static final List<String> KEYWORD_FIELD_VALUES = Collections.unmodifiableList(Arrays.asList("dog", "cat"));
private static final List<String> KEYWORD_FIELD_VALUES = Collections.unmodifiableList(Arrays.asList("cat", "dog"));

private String jobId;
private String sourceIndex;
Expand Down Expand Up @@ -97,6 +102,7 @@ public void testSingleNumericFeatureAndMixedTrainingAndNonTrainingRows() throws
"Creating destination index [" + destIndex + "]",
"Finished reindexing to destination index [" + destIndex + "]",
"Finished analysis");
assertEvaluation(KEYWORD_FIELD, KEYWORD_FIELD_VALUES, "ml.keyword-field_prediction");
}

public void testWithOnlyTrainingRowsAndTrainingPercentIsHundred() throws Exception {
Expand Down Expand Up @@ -136,11 +142,13 @@ public void testWithOnlyTrainingRowsAndTrainingPercentIsHundred() throws Excepti
"Creating destination index [" + destIndex + "]",
"Finished reindexing to destination index [" + destIndex + "]",
"Finished analysis");
assertEvaluation(KEYWORD_FIELD, KEYWORD_FIELD_VALUES, "ml.keyword-field_prediction");
}

public <T> void testWithOnlyTrainingRowsAndTrainingPercentIsFifty(
String jobId, String dependentVariable, List<T> dependentVariableValues, Function<String, T> parser) throws Exception {
initialize(jobId);
String predictedClassField = dependentVariable + "_prediction";
indexData(sourceIndex, 300, 0, dependentVariable);

int numTopClasses = 2;
Expand All @@ -166,7 +174,6 @@ public <T> void testWithOnlyTrainingRowsAndTrainingPercentIsFifty(
SearchResponse sourceData = client().prepareSearch(sourceIndex).setTrackTotalHits(true).setSize(1000).get();
for (SearchHit hit : sourceData.getHits()) {
Map<String, Object> resultsObject = getMlResultsObjectFromDestDoc(getDestDoc(config, hit));
String predictedClassField = dependentVariable + "_prediction";
assertThat(resultsObject.containsKey(predictedClassField), is(true));
T predictedClassValue = parser.apply((String) resultsObject.get(predictedClassField));
assertThat(predictedClassValue, is(in(dependentVariableValues)));
Expand Down Expand Up @@ -194,6 +201,10 @@ public <T> void testWithOnlyTrainingRowsAndTrainingPercentIsFifty(
"Creating destination index [" + destIndex + "]",
"Finished reindexing to destination index [" + destIndex + "]",
"Finished analysis");
assertEvaluation(
dependentVariable,
dependentVariableValues.stream().map(String::valueOf).collect(toList()),
"ml." + predictedClassField);
}

public void testWithOnlyTrainingRowsAndTrainingPercentIsFifty_DependentVariableIsKeyword() throws Exception {
Expand All @@ -219,51 +230,6 @@ public void testWithOnlyTrainingRowsAndTrainingPercentIsFifty_DependentVariableI
"classification_training_percent_is_50_boolean", BOOLEAN_FIELD, BOOLEAN_FIELD_VALUES, Boolean::valueOf);
}

public void testSingleNumericFeatureAndMixedTrainingAndNonTrainingRows_TopClassesRequested() throws Exception {
initialize("classification_top_classes_requested");
indexData(sourceIndex, 300, 50, KEYWORD_FIELD);

int numTopClasses = 2;
DataFrameAnalyticsConfig config =
buildAnalytics(
jobId,
sourceIndex,
destIndex,
null,
new Classification(KEYWORD_FIELD, BoostedTreeParamsTests.createRandom(), null, numTopClasses, null));
registerAnalytics(config);
putAnalytics(config);

assertIsStopped(jobId);
assertProgress(jobId, 0, 0, 0, 0);

startAnalytics(jobId);
waitUntilAnalyticsIsStopped(jobId);

client().admin().indices().refresh(new RefreshRequest(destIndex));
SearchResponse sourceData = client().prepareSearch(sourceIndex).setTrackTotalHits(true).setSize(1000).get();
for (SearchHit hit : sourceData.getHits()) {
Map<String, Object> destDoc = getDestDoc(config, hit);
Map<String, Object> resultsObject = getMlResultsObjectFromDestDoc(destDoc);

assertThat(resultsObject.containsKey("keyword-field_prediction"), is(true));
assertThat((String) resultsObject.get("keyword-field_prediction"), is(in(KEYWORD_FIELD_VALUES)));
assertTopClasses(resultsObject, numTopClasses, KEYWORD_FIELD, KEYWORD_FIELD_VALUES, String::valueOf);
}

assertProgress(jobId, 100, 100, 100, 100);
assertThat(searchStoredProgress(jobId).getHits().getTotalHits().value, equalTo(1L));
assertInferenceModelPersisted(jobId);
assertThatAuditMessagesMatch(jobId,
"Created analytics with analysis type [classification]",
"Estimated memory usage for this analytics to be",
"Starting analytics on node",
"Started analytics",
"Creating destination index [" + destIndex + "]",
"Finished reindexing to destination index [" + destIndex + "]",
"Finished analysis");
}

public void testDependentVariableCardinalityTooHighError() {
initialize("cardinality_too_high");
indexData(sourceIndex, 6, 5, KEYWORD_FIELD);
Expand Down Expand Up @@ -377,4 +343,26 @@ private static <T> void assertTopClasses(
// Assert that the top classes are listed in the order of decreasing probabilities.
assertThat(Ordering.natural().reverse().isOrdered(classProbabilities), is(true));
}

private void assertEvaluation(String dependentVariable, List<String> dependentVariableValues, String predictedClassField) {
EvaluateDataFrameAction.Response evaluateDataFrameResponse =
evaluateDataFrame(
destIndex,
new org.elasticsearch.xpack.core.ml.dataframe.evaluation.classification.Classification(
dependentVariable, predictedClassField, null));
assertThat(evaluateDataFrameResponse.getEvaluationName(), equalTo(Classification.NAME.getPreferredName()));
assertThat(evaluateDataFrameResponse.getMetrics().size(), equalTo(1));
MulticlassConfusionMatrix.Result confusionMatrixResult =
(MulticlassConfusionMatrix.Result) evaluateDataFrameResponse.getMetrics().get(0);
assertThat(confusionMatrixResult.getMetricName(), equalTo(MulticlassConfusionMatrix.NAME.getPreferredName()));
List<ActualClass> actualClasses = confusionMatrixResult.getConfusionMatrix();
assertThat(actualClasses.stream().map(ActualClass::getActualClass).collect(toList()), equalTo(dependentVariableValues));
for (ActualClass actualClass : actualClasses) {
assertThat(actualClass.getOtherPredictedClassDocCount(), equalTo(0L));
assertThat(
actualClass.getPredictedClasses().stream().map(PredictedClass::getPredictedClass).collect(toList()),
equalTo(dependentVariableValues));
}
assertThat(confusionMatrixResult.getOtherActualClassCount(), equalTo(0L));
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.sort.SortOrder;
import org.elasticsearch.xpack.core.ml.action.DeleteDataFrameAnalyticsAction;
import org.elasticsearch.xpack.core.ml.action.EvaluateDataFrameAction;
import org.elasticsearch.xpack.core.ml.action.GetDataFrameAnalyticsAction;
import org.elasticsearch.xpack.core.ml.action.GetDataFrameAnalyticsStatsAction;
import org.elasticsearch.xpack.core.ml.action.PutDataFrameAnalyticsAction;
Expand All @@ -28,6 +29,7 @@
import org.elasticsearch.xpack.core.ml.dataframe.DataFrameAnalyticsSource;
import org.elasticsearch.xpack.core.ml.dataframe.DataFrameAnalyticsState;
import org.elasticsearch.xpack.core.ml.dataframe.analyses.DataFrameAnalysis;
import org.elasticsearch.xpack.core.ml.dataframe.evaluation.Evaluation;
import org.elasticsearch.xpack.core.ml.inference.TrainedModelConfig;
import org.elasticsearch.xpack.core.ml.inference.persistence.InferenceIndexConstants;
import org.elasticsearch.xpack.core.ml.job.persistence.AnomalyDetectorsIndex;
Expand Down Expand Up @@ -143,6 +145,14 @@ protected GetDataFrameAnalyticsStatsAction.Response.Stats getAnalyticsStats(Stri
return stats.get(0);
}

protected EvaluateDataFrameAction.Response evaluateDataFrame(String index, Evaluation evaluation) {
EvaluateDataFrameAction.Request request =
new EvaluateDataFrameAction.Request()
.setIndices(List.of(index))
.setEvaluation(evaluation);
return client().execute(EvaluateDataFrameAction.INSTANCE, request).actionGet();
}

protected static DataFrameAnalyticsConfig buildAnalytics(String id, String sourceIndex, String destIndex,
@Nullable String resultsField, DataFrameAnalysis analysis) {
DataFrameAnalyticsConfig.Builder configBuilder = new DataFrameAnalyticsConfig.Builder();
Expand Down