Skip to content

llama : fix FA when KV cache is not used (i.e. embeddings) #12825

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 8, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions examples/server/tests/unit/test_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,26 @@ def test_embedding_multiple():
assert len(d['embedding']) > 1


def test_embedding_multiple_with_fa():
server = ServerPreset.bert_bge_small_with_fa()
server.pooling = 'last'
server.start()
# one of these should trigger the FA branch (i.e. context size % 256 == 0)
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"a "*253,
"b "*254,
"c "*255,
"d "*256,
],
})
assert res.status_code == 200
assert len(res.body['data']) == 4
for d in res.body['data']:
assert 'embedding' in d
assert len(d['embedding']) > 1


@pytest.mark.parametrize(
"input,is_multi_prompt",
[
Expand Down
15 changes: 15 additions & 0 deletions examples/server/tests/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -323,6 +323,21 @@ def bert_bge_small() -> ServerProcess:
server.server_embeddings = True
return server

@staticmethod
def bert_bge_small_with_fa() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 1024
server.n_batch = 300
server.n_ubatch = 300
server.n_slots = 2
server.fa = True
server.seed = 42
server.server_embeddings = True
return server

@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()
Expand Down
2 changes: 1 addition & 1 deletion examples/server_embd.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(0)*1024}
json= {"content": "a "*1022}
) for i in range(n)])

for response in responses:
Expand Down
14 changes: 9 additions & 5 deletions ggml/src/ggml-cpu/ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6721,8 +6721,8 @@ static void ggml_compute_forward_flash_attn_ext_f16(
ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;

GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");

// loop over n_batch and n_head
for (int ir = ir0; ir < ir1; ++ir) {
Expand Down Expand Up @@ -6818,10 +6818,14 @@ static void ggml_compute_forward_flash_attn_ext_f16(
vs = expf(s - M);
}

v_to_float(v_data, V32, DV);

// V += v*expf(s - M)
ggml_vec_mad_f32(DV, VKQ32, V32, vs);
if (v_to_float) {
v_to_float(v_data, V32, DV);
ggml_vec_mad_f32(DV, VKQ32, V32, vs);
} else {
// V is F32
ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
}
}

S = S*ms + vs; // scale and increment sum with partial sum
Expand Down
5 changes: 5 additions & 0 deletions ggml/src/ggml-metal/ggml-metal.m
Original file line number Diff line number Diff line change
Expand Up @@ -1345,6 +1345,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_ARANGE:
return true;
case GGML_OP_FLASH_ATTN_EXT:
if (op->src[0]->ne[0] == 32) {
// head size == 32 (e.g. bert-bge-small)
// TODO: not sure if it is worth adding kernels for this size
return false;
}
if (op->src[1]->type != op->src[2]->type) {
return false;
}
Expand Down
9 changes: 9 additions & 0 deletions src/llama-graph.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1215,6 +1215,15 @@ ggml_tensor * llm_graph_context::build_attn_mha(
v = ggml_transpose(ctx0, v);
}

// this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
if (k->type == GGML_TYPE_F32) {
k = ggml_cast(ctx0, k, GGML_TYPE_F16);
}

if (v->type == GGML_TYPE_F32) {
v = ggml_cast(ctx0, v, GGML_TYPE_F16);
}

cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);

Expand Down
Loading