You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Given a non-negative integer x, return the square root ofxrounded down to the nearest integer. The returned integer should be non-negative as well.
You must not use any built-in exponent function or operator.
For example, do not use pow(x, 0.5) in c++ or x ** 0.5 in python.
Example 1:
Input: x = 4
Output: 2
Explanation: The square root of 4 is 2, so we return 2.
Example 2:
Input: x = 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since we round it down to the nearest integer, 2 is returned.
Constraints:
0 <= x <= 2^31 - 1
这道题要求平方根,博主能想到的方法就是算一个候选值的平方,然后和x比较大小,为了缩短查找时间,这里采用二分搜索法来找平方根,这里属于博主之前总结的 LeetCode Binary Search Summary 二分搜索法小结 中的第三类的变形,找最后一个不大于目标值的数,这里细心的童鞋可能会有疑问,在总结贴中第三类博主的 right 用的是开区间,那么这里为啥 right 初始化为x,而不是 x+1 呢?因为总结帖里的 left 和 right 都是数组下标,这里的 left 和 right 直接就是数字本身了,一个数字的平方根是不可能比起本身还大的,所以不用加1,还有就是这里若x是整型最大值,再加1就会溢出。最后就是返回值是 right-1,因为题目中说了要把小数部分减去,只有减1才能得到正确的值,代码如下:
解法一:
class Solution {
public:
int mySqrt(int x) {
if (x <= 1) return x;
int left = 0, right = x;
while (left < right) {
int mid = left + (right - left) / 2;
if (x / mid >= mid) left = mid + 1;
else right = mid;
}
return right - 1;
}
};
xi+1=xi - (xi2 - n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2
解法二:
class Solution {
public:
int mySqrt(int x) {
if (x == 0) return 0;
double res = 1, pre = 0;
while (abs(res - pre) > 1e-6) {
pre = res;
res = (res + x / res) / 2;
}
return int(res);
}
};
也是牛顿迭代法,写法更加简洁一些,注意为了防止越界,声明为长整型,参见代码如下:
解法三:
class Solution {
public:
int mySqrt(int x) {
long res = x;
while (res * res > x) {
res = (res + x / res) / 2;
}
return res;
}
};
请点击下方图片观看讲解视频
Click below image to watch YouTube Video
Given a non-negative integer
x
, return the square root ofx
rounded down to the nearest integer. The returned integer should be non-negative as well.You must not use any built-in exponent function or operator.
pow(x, 0.5)
in c++ orx ** 0.5
in python.Example 1:
Example 2:
Constraints:
0 <= x <= 2^31 - 1
这道题要求平方根,博主能想到的方法就是算一个候选值的平方,然后和x比较大小,为了缩短查找时间,这里采用二分搜索法来找平方根,这里属于博主之前总结的 LeetCode Binary Search Summary 二分搜索法小结 中的第三类的变形,找最后一个不大于目标值的数,这里细心的童鞋可能会有疑问,在总结贴中第三类博主的 right 用的是开区间,那么这里为啥 right 初始化为x,而不是 x+1 呢?因为总结帖里的 left 和 right 都是数组下标,这里的 left 和 right 直接就是数字本身了,一个数字的平方根是不可能比起本身还大的,所以不用加1,还有就是这里若x是整型最大值,再加1就会溢出。最后就是返回值是 right-1,因为题目中说了要把小数部分减去,只有减1才能得到正确的值,代码如下:
解法一:
这道题还有另一种解法,是利用牛顿迭代法,记得高数中好像讲到过这个方法,是用逼近法求方程根的神器,在这里也可以借用一下,可参见网友 Annie Kim's Blog的博客,因为要求 x2 = n 的解,令 f(x)=x2-n,相当于求解 f(x)=0 的解,根据牛顿迭代法可以知道,xn+1 = xn - f(xn) / f'(xn),这里的 f'(xn) 是 f(xn) 的导数,不理解的童鞋请自行补习高数,故而可以求出递推式如下:
xi+1=xi - (xi2 - n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2
解法二:
也是牛顿迭代法,写法更加简洁一些,注意为了防止越界,声明为长整型,参见代码如下:
解法三:
Github 同步地址:
#69
类似题目:
Pow(x, n)
Valid Perfect Square
参考资料:
https://leetcode.com/problems/sqrtx/description/
https://leetcode.com/problems/sqrtx/discuss/25130/My-clean-C++-code-8ms
https://leetcode.com/problems/sqrtx/discuss/25047/A-Binary-Search-Solution
https://leetcode.com/problems/sqrtx/discuss/25057/3-4-short-lines-Integer-Newton-Every-Language
LeetCode All in One 题目讲解汇总(持续更新中...)
(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,快快加入吧~)
微信打赏
Venmo 打赏
---|---
The text was updated successfully, but these errors were encountered: