Skip to content

Use torch in get_2d_sincos_pos_embed and get_3d_sincos_pos_embed #10156

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Dec 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
257 changes: 243 additions & 14 deletions src/diffusers/models/embeddings.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,78 @@ def get_3d_sincos_pos_embed(
temporal_size: int,
spatial_interpolation_scale: float = 1.0,
temporal_interpolation_scale: float = 1.0,
device: Optional[torch.device] = None,
output_type: str = "np",
) -> torch.Tensor:
r"""
Creates 3D sinusoidal positional embeddings.

Args:
embed_dim (`int`):
The embedding dimension of inputs. It must be divisible by 16.
spatial_size (`int` or `Tuple[int, int]`):
The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both
spatial dimensions (height and width).
temporal_size (`int`):
The temporal dimension of postional embeddings (number of frames).
spatial_interpolation_scale (`float`, defaults to 1.0):
Scale factor for spatial grid interpolation.
temporal_interpolation_scale (`float`, defaults to 1.0):
Scale factor for temporal grid interpolation.

Returns:
`torch.Tensor`:
The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
embed_dim]`.
"""
if output_type == "np":
return _get_3d_sincos_pos_embed_np(
embed_dim=embed_dim,
spatial_size=spatial_size,
temporal_size=temporal_size,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
)
if embed_dim % 4 != 0:
raise ValueError("`embed_dim` must be divisible by 4")
if isinstance(spatial_size, int):
spatial_size = (spatial_size, spatial_size)

embed_dim_spatial = 3 * embed_dim // 4
embed_dim_temporal = embed_dim // 4

# 1. Spatial
grid_h = torch.arange(spatial_size[1], device=device, dtype=torch.float32) / spatial_interpolation_scale
grid_w = torch.arange(spatial_size[0], device=device, dtype=torch.float32) / spatial_interpolation_scale
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
grid = torch.stack(grid, dim=0)

grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid, output_type="pt")

# 2. Temporal
grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32) / temporal_interpolation_scale
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t, output_type="pt")

# 3. Concat
pos_embed_spatial = pos_embed_spatial[None, :, :]
pos_embed_spatial = pos_embed_spatial.repeat_interleave(temporal_size, dim=0) # [T, H*W, D // 4 * 3]

pos_embed_temporal = pos_embed_temporal[:, None, :]
pos_embed_temporal = pos_embed_temporal.repeat_interleave(
spatial_size[0] * spatial_size[1], dim=1
) # [T, H*W, D // 4]

pos_embed = torch.concat([pos_embed_temporal, pos_embed_spatial], dim=-1) # [T, H*W, D]
return pos_embed


def _get_3d_sincos_pos_embed_np(
embed_dim: int,
spatial_size: Union[int, Tuple[int, int]],
temporal_size: int,
spatial_interpolation_scale: float = 1.0,
temporal_interpolation_scale: float = 1.0,
) -> np.ndarray:
r"""
Creates 3D sinusoidal positional embeddings.
Expand All @@ -106,6 +178,12 @@ def get_3d_sincos_pos_embed(
The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
embed_dim]`.
"""
deprecation_message = (
"`get_3d_sincos_pos_embed` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
if embed_dim % 4 != 0:
raise ValueError("`embed_dim` must be divisible by 4")
if isinstance(spatial_size, int):
Expand Down Expand Up @@ -139,6 +217,143 @@ def get_3d_sincos_pos_embed(


def get_2d_sincos_pos_embed(
embed_dim,
grid_size,
cls_token=False,
extra_tokens=0,
interpolation_scale=1.0,
base_size=16,
device: Optional[torch.device] = None,
output_type: str = "np",
):
"""
Creates 2D sinusoidal positional embeddings.

Args:
embed_dim (`int`):
The embedding dimension.
grid_size (`int`):
The size of the grid height and width.
cls_token (`bool`, defaults to `False`):
Whether or not to add a classification token.
extra_tokens (`int`, defaults to `0`):
The number of extra tokens to add.
interpolation_scale (`float`, defaults to `1.0`):
The scale of the interpolation.

Returns:
pos_embed (`torch.Tensor`):
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
embed_dim]` if using cls_token
"""
if output_type == "np":
deprecation_message = (
"`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
return get_2d_sincos_pos_embed_np(
embed_dim=embed_dim,
grid_size=grid_size,
cls_token=cls_token,
extra_tokens=extra_tokens,
interpolation_scale=interpolation_scale,
base_size=base_size,
)
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)

grid_h = (
torch.arange(grid_size[0], device=device, dtype=torch.float32)
/ (grid_size[0] / base_size)
/ interpolation_scale
)
grid_w = (
torch.arange(grid_size[1], device=device, dtype=torch.float32)
/ (grid_size[1] / base_size)
/ interpolation_scale
)
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
grid = torch.stack(grid, dim=0)

grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type=output_type)
if cls_token and extra_tokens > 0:
pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type="np"):
r"""
This function generates 2D sinusoidal positional embeddings from a grid.

Args:
embed_dim (`int`): The embedding dimension.
grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.

Returns:
`torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
"""
if output_type == "np":
deprecation_message = (
"`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
return get_2d_sincos_pos_embed_from_grid_np(
embed_dim=embed_dim,
grid=grid,
)
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")

# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], output_type=output_type) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], output_type=output_type) # (H*W, D/2)

emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, output_type="np"):
"""
This function generates 1D positional embeddings from a grid.

Args:
embed_dim (`int`): The embedding dimension `D`
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`

Returns:
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
"""
if output_type == "np":
deprecation_message = (
"`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
return get_1d_sincos_pos_embed_from_grid_np(embed_dim=embed_dim, pos=pos)
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")

omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)

pos = pos.reshape(-1) # (M,)
out = torch.outer(pos, omega) # (M, D/2), outer product

emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)

emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
return emb


def get_2d_sincos_pos_embed_np(
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
"""
Expand Down Expand Up @@ -170,13 +385,13 @@ def get_2d_sincos_pos_embed(
grid = np.stack(grid, axis=0)

grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
pos_embed = get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
def get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid):
r"""
This function generates 2D sinusoidal positional embeddings from a grid.

Expand All @@ -191,14 +406,14 @@ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
raise ValueError("embed_dim must be divisible by 2")

# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb_h = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[1]) # (H*W, D/2)

emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
def get_1d_sincos_pos_embed_from_grid_np(embed_dim, pos):
"""
This function generates 1D positional embeddings from a grid.

Expand Down Expand Up @@ -288,10 +503,14 @@ def __init__(
self.pos_embed = None
elif pos_embed_type == "sincos":
pos_embed = get_2d_sincos_pos_embed(
embed_dim, grid_size, base_size=self.base_size, interpolation_scale=self.interpolation_scale
embed_dim,
grid_size,
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
output_type="pt",
)
persistent = True if pos_embed_max_size else False
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=persistent)
self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=persistent)
else:
raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")

Expand Down Expand Up @@ -341,8 +560,10 @@ def forward(self, latent):
grid_size=(height, width),
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
device=latent.device,
output_type="pt",
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).to(latent.device)
pos_embed = pos_embed.float().unsqueeze(0)
else:
pos_embed = self.pos_embed

Expand Down Expand Up @@ -453,7 +674,9 @@ def __init__(
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
self.register_buffer("pos_embedding", pos_embedding, persistent=persistent)

def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor:
def _get_positional_embeddings(
self, sample_height: int, sample_width: int, sample_frames: int, device: Optional[torch.device] = None
) -> torch.Tensor:
post_patch_height = sample_height // self.patch_size
post_patch_width = sample_width // self.patch_size
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
Expand All @@ -465,8 +688,10 @@ def _get_positional_embeddings(self, sample_height: int, sample_width: int, samp
post_time_compression_frames,
self.spatial_interpolation_scale,
self.temporal_interpolation_scale,
device=device,
output_type="pt",
)
pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1)
pos_embedding = pos_embedding.flatten(0, 1)
joint_pos_embedding = torch.zeros(
1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
)
Expand Down Expand Up @@ -521,8 +746,10 @@ def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
or self.sample_width != width
or self.sample_frames != pre_time_compression_frames
):
pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames)
pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype)
pos_embedding = self._get_positional_embeddings(
height, width, pre_time_compression_frames, device=embeds.device
)
pos_embedding = pos_embedding.to(dtype=embeds.dtype)
else:
pos_embedding = self.pos_embedding

Expand Down Expand Up @@ -552,9 +779,11 @@ def __init__(
# Linear projection for text embeddings
self.text_proj = nn.Linear(text_hidden_size, hidden_size)

pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, base_size=pos_embed_max_size)
pos_embed = get_2d_sincos_pos_embed(
hidden_size, pos_embed_max_size, base_size=pos_embed_max_size, output_type="pt"
)
pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size)
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float(), persistent=False)
self.register_buffer("pos_embed", pos_embed.float(), persistent=False)

def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, channel, height, width = hidden_states.shape
Expand Down
4 changes: 2 additions & 2 deletions src/diffusers/models/transformers/latte_transformer_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,9 +156,9 @@ def __init__(

# define temporal positional embedding
temp_pos_embed = get_1d_sincos_pos_embed_from_grid(
inner_dim, torch.arange(0, video_length).unsqueeze(1)
inner_dim, torch.arange(0, video_length).unsqueeze(1), output_type="pt"
) # 1152 hidden size
self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False)
self.register_buffer("temp_pos_embed", temp_pos_embed.float().unsqueeze(0), persistent=False)

self.gradient_checkpointing = False

Expand Down
4 changes: 2 additions & 2 deletions src/diffusers/pipelines/unidiffuser/modeling_uvit.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,8 +104,8 @@ def __init__(

self.use_pos_embed = use_pos_embed
if self.use_pos_embed:
pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5))
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5), output_type="pt")
self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=False)

def forward(self, latent):
latent = self.proj(latent)
Expand Down
Loading