A Model Context Protocol (MCP) server for interacting with Keboola Connection. This server provides tools for listing and accessing data from Keboola Storage API.
- Keboola Storage API token
- Snowflake Read Only Workspace
To install Keboola Explorer for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install keboola-mcp-server --client claude
First, clone the repository and create a virtual environment:
git clone https://github.com/keboola/keboola-mcp-server.git
cd keboola-mcp-server
python3 -m venv .venv
source .venv/bin/activate
Install the package in development mode:
pip3 install -e .
For development dependencies:
pip3 install -e ".[dev]"
To use this server with Claude Desktop, follow these steps:
-
Create or edit the Claude Desktop configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
-
Add the following configuration (adjust paths according to your setup):
{
"mcpServers": {
"keboola": {
"command": "/path/to/keboola-mcp-server/.venv/bin/python",
"args": [
"-m",
"keboola_mcp_server",
"--api-url",
"https://connection.YOUR_REGION.keboola.com"
],
"env": {
"KBC_STORAGE_TOKEN": "your-keboola-storage-token",
"KBC_WORKSPACE_USER": "your-workspace-user"
}
}
}
}
Replace:
/path/to/keboola-mcp-server
with your actual path to the cloned repositoryyour-keboola-storage-token
with your Keboola Storage API tokenYOUR_REGION
with your Keboola region (e.g.,north-europe.azure
, etc.). You can remove it if your region is justconnection
explicitlyyour-workspace-user
with your Snowflake workspace username
Note: If you are using a specific version of Python (e.g. 3.11 due to some package compatibility issues), you'll need to update the
command
into using that specific version, e.g./path/to/keboola-mcp-server/.venv/bin/python3.11
Note: The Read Only Snowflake Workspace can be created in your Keboola project. It is the same project where you got your Storage Token. The workspace will provide all the necessary Snowflake connection parameters including the username.
- After updating the configuration:
- Completely quit Claude Desktop (don't just close the window)
- Restart Claude Desktop
- Look for the hammer icon in the bottom right corner, indicating the server is connected
If you encounter connection issues:
- Check the logs in Claude Desktop for any error messages
- Verify your Keboola Storage API token is correct
- Ensure all paths in the configuration are absolute paths
- Confirm the virtual environment is properly activated and all dependencies are installed
To use this server with Cursor AI, you have two options for configuring the transport method: Server-Sent Events (SSE) or Standard I/O (stdio).
-
Create or edit the Cursor AI configuration file:
- Location:
~/.cursor/mcp.json
- Location:
-
Add one of the following configurations (or all) based on your preferred transport method:
{
"mcpServers": {
"keboola": {
"url": "http://localhost:8000/sse?storage_token=YOUR-KEBOOLA-STORAGE-TOKEN&workspace_user=YOUR-WORKSPACE-USER"
}
}
}
{
"mcpServers": {
"keboola": {
"command": "/path/to/keboola-mcp-server/venv/bin/python",
"args": [
"-m",
"keboola_mcp_server",
"--transport",
"stdio",
"--api-url",
"https://connection.YOUR_REGION.keboola.com"
],
"env": {
"KBC_STORAGE_TOKEN": "your-keboola-storage-token",
"KBC_WORKSPACE_USER": "your-workspace-user"
}
}
}
}
When running the MCP server from Windows Subsystem for Linux with Cursor AI, use this.
{
"mcpServers": {
"keboola": {
"command": "wsl.exe",
"args": [
"bash",
"-c",
"'source /wsl_path/to/keboola-mcp-server/.env",
"&&",
"/wsl_path/to/keboola-mcp-server/venv/bin/python -m keboola_mcp_server.cli --transport stdio'"
]
}
}
}
- where
/wsl_path/to/keboola-mcp-server/.env
file contains environment variables:
export KBC_STORAGE_TOKEN="your-keboola-storage-token"
export KBC_WORKSPACE_USER="your-workspace-user"
Replace all placeholder values (your_*
) with your actual Keboola and Snowflake credentials. These can be obtained from your Keboola project's Read Only Snowflake Workspace.
Replace YOUR_REGION
with your Keboola region (e.g., north-europe.azure
, etc.). You can remove it if your region is just connection
explicitly.
After updating the configuration:
- Restart Cursor AI
- If you use the
sse
transport make sure to start your MCP server. You can do so by running this in the activated virtual environment where you built the server:/path/to/keboola-mcp-server/venv/bin/python -m keboola_mcp_server --transport sse --api-url https://connection.YOUR_REGION.keboola.com
- Cursor AI should be automatically detect your MCP server and enable it.
The server provides the following tools for interacting with Keboola Connection:
- List buckets and tables
- Get bucket and table information
- Preview table data
- Export table data to CSV
- List components and configurations
Run tests:
pytest
Format code:
black .
isort .
Type checking:
mypy .
MIT License - see LICENSE file for details.