Skip to content

langchain-ai/langchain-postgres

Folders and files

NameName
Last commit message
Last commit date

Latest commit

164810f · Apr 15, 2025

History

99 Commits
Dec 10, 2024
Apr 15, 2025
Apr 15, 2025
Apr 15, 2025
Apr 8, 2024
Feb 4, 2025
Feb 4, 2025
Apr 8, 2024
Apr 8, 2025
Apr 10, 2025
Apr 8, 2025
Apr 8, 2025
Apr 8, 2025
Apr 18, 2024

Repository files navigation

langchain-postgres

Release Notes CI License: MIT Twitter Open Issues

The langchain-postgres package implementations of core LangChain abstractions using Postgres.

The package is released under the MIT license.

Feel free to use the abstraction as provided or else modify them / extend them as appropriate for your own application.

Requirements

The package supports the asyncpg and psycogp3 drivers.

Installation

pip install -U langchain-postgres

Vectorstore

Warning

In v0.0.14+, PGVector is deprecated. Please migrate to PGVectorStore for improved performance and manageability. See the migration guide for details on how to migrate from PGVector to PGVectorStore.

Documentation

Example

from langchain_core.documents import Document
from langchain_core.embeddings import DeterministicFakeEmbedding
from langchain_postgres import PGEngine, PGVectorStore

# Replace the connection string with your own Postgres connection string
CONNECTION_STRING = "postgresql+psycopg3://langchain:langchain@localhost:6024/langchain"
engine = PGEngine.from_connection_string(url=CONNECTION_STRING)

# Replace the vector size with your own vector size
VECTOR_SIZE = 768
embedding = DeterministicFakeEmbedding(size=VECTOR_SIZE)

TABLE_NAME = "my_doc_collection"

engine.init_vectorstore_table(
    table_name=TABLE_NAME,
    vector_size=VECTOR_SIZE,
)

store = PGVectorStore.create_sync(
    engine=engine,
    table_name=TABLE_NAME,
    embedding_service=embedding,
)

docs = [
    Document(page_content="Apples and oranges"),
    Document(page_content="Cars and airplanes"),
    Document(page_content="Train")
]

store.add_documents(docs)

query = "I'd like a fruit."
docs = store.similarity_search(query)
print(docs)

Tip

All synchronous functions have corresponding asynchronous functions

ChatMessageHistory

The chat message history abstraction helps to persist chat message history in a postgres table.

PostgresChatMessageHistory is parameterized using a table_name and a session_id.

The table_name is the name of the table in the database where the chat messages will be stored.

The session_id is a unique identifier for the chat session. It can be assigned by the caller using uuid.uuid4().

import uuid

from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_postgres import PostgresChatMessageHistory
import psycopg

# Establish a synchronous connection to the database
# (or use psycopg.AsyncConnection for async)
conn_info = ... # Fill in with your connection info
sync_connection = psycopg.connect(conn_info)

# Create the table schema (only needs to be done once)
table_name = "chat_history"
PostgresChatMessageHistory.create_tables(sync_connection, table_name)

session_id = str(uuid.uuid4())

# Initialize the chat history manager
chat_history = PostgresChatMessageHistory(
    table_name,
    session_id,
    sync_connection=sync_connection
)

# Add messages to the chat history
chat_history.add_messages([
    SystemMessage(content="Meow"),
    AIMessage(content="woof"),
    HumanMessage(content="bark"),
])

print(chat_history.messages)

Google Cloud Integrations

Google Cloud provides Vector Store, Chat Message History, and Data Loader integrations for AlloyDB and Cloud SQL for PostgreSQL databases via the following PyPi packages:

Using the Google Cloud integrations provides the following benefits:

  • Enhanced Security: Securely connect to Google Cloud databases utilizing IAM for authorization and database authentication without needing to manage SSL certificates, configure firewall rules, or enable authorized networks.
  • Simplified and Secure Connections: Connect to Google Cloud databases effortlessly using the instance name instead of complex connection strings. The integrations creates a secure connection pool that can be easily shared across your application using the engine object.
Vector Store Metadata filtering Async support Schema Flexibility Improved metadata handling Hybrid Search
Google AlloyDB
Google Cloud SQL Postgres