Skip to content

Improve support for numeric string types #48837

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 25, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 32 additions & 13 deletions src/compiler/checker.ts
Original file line number Diff line number Diff line change
Expand Up @@ -833,6 +833,7 @@ namespace ts {
const keyofConstraintType = keyofStringsOnly ? stringType : stringNumberSymbolType;
const numberOrBigIntType = getUnionType([numberType, bigintType]);
const templateConstraintType = getUnionType([stringType, numberType, booleanType, bigintType, nullType, undefinedType]) as UnionType;
const numericStringType = getTemplateLiteralType(["", ""], [numberType]); // The `${number}` type

const restrictiveMapper: TypeMapper = makeFunctionTypeMapper(t => t.flags & TypeFlags.TypeParameter ? getRestrictiveTypeParameter(t as TypeParameter) : t);
const permissiveMapper: TypeMapper = makeFunctionTypeMapper(t => t.flags & TypeFlags.TypeParameter ? wildcardType : t);
Expand Down Expand Up @@ -12273,7 +12274,7 @@ namespace ts {
const typeVariable = getHomomorphicTypeVariable(type);
if (typeVariable && !type.declaration.nameType) {
const constraint = getConstraintOfTypeParameter(typeVariable);
if (constraint && (isArrayType(constraint) || isTupleType(constraint))) {
if (constraint && isArrayOrTupleType(constraint)) {
return instantiateType(type, prependTypeMapping(typeVariable, constraint, type.mapper));
}
}
Expand Down Expand Up @@ -12654,10 +12655,10 @@ namespace ts {

function isApplicableIndexType(source: Type, target: Type): boolean {
// A 'string' index signature applies to types assignable to 'string' or 'number', and a 'number' index
// signature applies to types assignable to 'number' and numeric string literal types.
// signature applies to types assignable to 'number', `${number}` and numeric string literal types.
return isTypeAssignableTo(source, target) ||
target === stringType && isTypeAssignableTo(source, numberType) ||
target === numberType && !!(source.flags & TypeFlags.StringLiteral) && isNumericLiteralName((source as StringLiteralType).value);
target === numberType && (source === numericStringType || !!(source.flags & TypeFlags.StringLiteral) && isNumericLiteralName((source as StringLiteralType).value));
}

function getIndexInfosOfStructuredType(type: Type): readonly IndexInfo[] {
Expand Down Expand Up @@ -13778,6 +13779,20 @@ namespace ts {
constraints = append(constraints, constraint);
}
}
// Given a homomorphic mapped type { [K in keyof T]: XXX }, where T is constrained to an array or tuple type, in the
// template type XXX, K has an added constraint of number | `${number}`.
else if (type.flags & TypeFlags.TypeParameter && parent.kind === SyntaxKind.MappedType && node === (parent as MappedTypeNode).type) {
const mappedType = getTypeFromTypeNode(parent as TypeNode) as MappedType;
if (getTypeParameterFromMappedType(mappedType) === getActualTypeVariable(type)) {
const typeParameter = getHomomorphicTypeVariable(mappedType);
if (typeParameter) {
const constraint = getConstraintOfTypeParameter(typeParameter);
if (constraint && everyType(constraint, isArrayOrTupleType)) {
constraints = append(constraints, getUnionType([numberType, numericStringType]));
}
}
}
}
node = parent;
}
return constraints ? getSubstitutionType(type, getIntersectionType(append(constraints, type))) : type;
Expand Down Expand Up @@ -14817,7 +14832,7 @@ namespace ts {
i--;
const t = types[i];
const remove =
t.flags & TypeFlags.String && includes & TypeFlags.StringLiteral ||
t.flags & TypeFlags.String && includes & (TypeFlags.StringLiteral | TypeFlags.TemplateLiteral | TypeFlags.StringMapping) ||
t.flags & TypeFlags.Number && includes & TypeFlags.NumberLiteral ||
t.flags & TypeFlags.BigInt && includes & TypeFlags.BigIntLiteral ||
t.flags & TypeFlags.ESSymbol && includes & TypeFlags.UniqueESSymbol;
Expand Down Expand Up @@ -14978,7 +14993,7 @@ namespace ts {
if (!strictNullChecks && includes & TypeFlags.Nullable) {
return includes & TypeFlags.Undefined ? undefinedType : nullType;
}
if (includes & TypeFlags.String && includes & TypeFlags.StringLiteral ||
if (includes & TypeFlags.String && includes & (TypeFlags.StringLiteral | TypeFlags.TemplateLiteral | TypeFlags.StringMapping) ||
includes & TypeFlags.Number && includes & TypeFlags.NumberLiteral ||
includes & TypeFlags.BigInt && includes & TypeFlags.BigIntLiteral ||
includes & TypeFlags.ESSymbol && includes & TypeFlags.UniqueESSymbol) {
Expand Down Expand Up @@ -16996,7 +17011,7 @@ namespace ts {
if (!type.declaration.nameType) {
let constraint;
if (isArrayType(t) || t.flags & TypeFlags.Any && findResolutionCycleStartIndex(typeVariable, TypeSystemPropertyName.ImmediateBaseConstraint) < 0 &&
(constraint = getConstraintOfTypeParameter(typeVariable)) && everyType(constraint, or(isArrayType, isTupleType))) {
(constraint = getConstraintOfTypeParameter(typeVariable)) && everyType(constraint, isArrayOrTupleType)) {
return instantiateMappedArrayType(t, type, prependTypeMapping(typeVariable, t, mapper));
}
if (isGenericTupleType(t)) {
Expand Down Expand Up @@ -18565,7 +18580,7 @@ namespace ts {
}
return false;
}
return isTupleType(target) || isArrayType(target);
return isArrayOrTupleType(target);
}
if (isReadonlyArrayType(source) && isMutableArrayOrTuple(target)) {
if (reportErrors) {
Expand Down Expand Up @@ -18700,7 +18715,7 @@ namespace ts {
// recursive intersections that are structurally similar but not exactly identical. See #37854.
if (result && !inPropertyCheck && (
target.flags & TypeFlags.Intersection && (isPerformingExcessPropertyChecks || isPerformingCommonPropertyChecks) ||
isNonGenericObjectType(target) && !isArrayType(target) && !isTupleType(target) && source.flags & TypeFlags.Intersection && getApparentType(source).flags & TypeFlags.StructuredType && !some((source as IntersectionType).types, t => !!(getObjectFlags(t) & ObjectFlags.NonInferrableType)))) {
isNonGenericObjectType(target) && !isArrayOrTupleType(target) && source.flags & TypeFlags.Intersection && getApparentType(source).flags & TypeFlags.StructuredType && !some((source as IntersectionType).types, t => !!(getObjectFlags(t) & ObjectFlags.NonInferrableType)))) {
inPropertyCheck = true;
result &= recursiveTypeRelatedTo(source, target, reportErrors, IntersectionState.PropertyCheck, recursionFlags);
inPropertyCheck = false;
Expand Down Expand Up @@ -19708,7 +19723,7 @@ namespace ts {
return varianceResult;
}
}
else if (isReadonlyArrayType(target) ? isArrayType(source) || isTupleType(source) : isArrayType(target) && isTupleType(source) && !source.target.readonly) {
else if (isReadonlyArrayType(target) ? isArrayOrTupleType(source) : isArrayType(target) && isTupleType(source) && !source.target.readonly) {
if (relation !== identityRelation) {
return isRelatedTo(getIndexTypeOfType(source, numberType) || anyType, getIndexTypeOfType(target, numberType) || anyType, RecursionFlags.Both, reportErrors);
}
Expand Down Expand Up @@ -20093,7 +20108,7 @@ namespace ts {
}
let result = Ternary.True;
if (isTupleType(target)) {
if (isArrayType(source) || isTupleType(source)) {
if (isArrayOrTupleType(source)) {
if (!target.target.readonly && (isReadonlyArrayType(source) || isTupleType(source) && source.target.readonly)) {
return Ternary.False;
}
Expand Down Expand Up @@ -21098,6 +21113,10 @@ namespace ts {
return !!(getObjectFlags(type) & ObjectFlags.Reference) && (type as TypeReference).target === globalReadonlyArrayType;
}

function isArrayOrTupleType(type: Type): type is TypeReference {
return isArrayType(type) || isTupleType(type);
}

function isMutableArrayOrTuple(type: Type): boolean {
return isArrayType(type) && !isReadonlyArrayType(type) || isTupleType(type) && !type.target.readonly;
}
Expand Down Expand Up @@ -21598,7 +21617,7 @@ namespace ts {
else if (type.flags & TypeFlags.Intersection) {
result = getIntersectionType(sameMap((type as IntersectionType).types, getWidenedType));
}
else if (isArrayType(type) || isTupleType(type)) {
else if (isArrayOrTupleType(type)) {
result = createTypeReference(type.target, sameMap(getTypeArguments(type), getWidenedType));
}
if (result && context === undefined) {
Expand Down Expand Up @@ -21635,7 +21654,7 @@ namespace ts {
}
}
}
if (isArrayType(type) || isTupleType(type)) {
if (isArrayOrTupleType(type)) {
for (const t of getTypeArguments(type)) {
if (reportWideningErrorsInType(t)) {
errorReported = true;
Expand Down Expand Up @@ -22714,7 +22733,7 @@ namespace ts {
}
// Infer from the members of source and target only if the two types are possibly related
if (!typesDefinitelyUnrelated(source, target)) {
if (isArrayType(source) || isTupleType(source)) {
if (isArrayOrTupleType(source)) {
if (isTupleType(target)) {
const sourceArity = getTypeReferenceArity(source);
const targetArity = getTypeReferenceArity(target);
Expand Down
80 changes: 80 additions & 0 deletions tests/baselines/reference/numericStringLiteralTypes.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
//// [numericStringLiteralTypes.ts]
type T0 = string & `${string}`; // string
type T1 = string & `${number}`; // `${number}
type T2 = string & `${bigint}`; // `${bigint}
type T3<T extends string> = string & `${T}`; // `${T}
type T4<T extends string> = string & `${Capitalize<`${T}`>}`; // `${Capitalize<T>}`

function f1(a: boolean[], x: `${number}`) {
let s = a[x]; // boolean
}

function f2(a: boolean[], x: number | `${number}`) {
let s = a[x]; // boolean
}

type T10 = boolean[][`${number}`]; // boolean
type T11 = boolean[][number | `${number}`]; // boolean

type T20<T extends number | `${number}`> = T;
type T21<T extends unknown[]> = { [K in keyof T]: T20<K> };

type Container<T> = {
value: T
}

type UnwrapContainers<T extends Container<unknown>[]> = { [K in keyof T]: T[K]['value'] };

declare function createContainer<T extends unknown>(value: T): Container<T>;

declare function f<T extends Container<unknown>[]>(containers: [...T], callback: (...values: UnwrapContainers<T>) => void): void;

const container1 = createContainer('hi')
const container2 = createContainer(2)

f([container1, container2], (value1, value2) => {
value1; // string
value2; // number
});


//// [numericStringLiteralTypes.js]
"use strict";
function f1(a, x) {
var s = a[x]; // boolean
}
function f2(a, x) {
var s = a[x]; // boolean
}
var container1 = createContainer('hi');
var container2 = createContainer(2);
f([container1, container2], function (value1, value2) {
value1; // string
value2; // number
});


//// [numericStringLiteralTypes.d.ts]
declare type T0 = string & `${string}`;
declare type T1 = string & `${number}`;
declare type T2 = string & `${bigint}`;
declare type T3<T extends string> = string & `${T}`;
declare type T4<T extends string> = string & `${Capitalize<`${T}`>}`;
declare function f1(a: boolean[], x: `${number}`): void;
declare function f2(a: boolean[], x: number | `${number}`): void;
declare type T10 = boolean[][`${number}`];
declare type T11 = boolean[][number | `${number}`];
declare type T20<T extends number | `${number}`> = T;
declare type T21<T extends unknown[]> = {
[K in keyof T]: T20<K>;
};
declare type Container<T> = {
value: T;
};
declare type UnwrapContainers<T extends Container<unknown>[]> = {
[K in keyof T]: T[K]['value'];
};
declare function createContainer<T extends unknown>(value: T): Container<T>;
declare function f<T extends Container<unknown>[]>(containers: [...T], callback: (...values: UnwrapContainers<T>) => void): void;
declare const container1: Container<string>;
declare const container2: Container<number>;
122 changes: 122 additions & 0 deletions tests/baselines/reference/numericStringLiteralTypes.symbols
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
=== tests/cases/conformance/types/literal/numericStringLiteralTypes.ts ===
type T0 = string & `${string}`; // string
>T0 : Symbol(T0, Decl(numericStringLiteralTypes.ts, 0, 0))

type T1 = string & `${number}`; // `${number}
>T1 : Symbol(T1, Decl(numericStringLiteralTypes.ts, 0, 31))

type T2 = string & `${bigint}`; // `${bigint}
>T2 : Symbol(T2, Decl(numericStringLiteralTypes.ts, 1, 31))

type T3<T extends string> = string & `${T}`; // `${T}
>T3 : Symbol(T3, Decl(numericStringLiteralTypes.ts, 2, 31))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 3, 8))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 3, 8))

type T4<T extends string> = string & `${Capitalize<`${T}`>}`; // `${Capitalize<T>}`
>T4 : Symbol(T4, Decl(numericStringLiteralTypes.ts, 3, 44))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 4, 8))
>Capitalize : Symbol(Capitalize, Decl(lib.es5.d.ts, --, --))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 4, 8))

function f1(a: boolean[], x: `${number}`) {
>f1 : Symbol(f1, Decl(numericStringLiteralTypes.ts, 4, 61))
>a : Symbol(a, Decl(numericStringLiteralTypes.ts, 6, 12))
>x : Symbol(x, Decl(numericStringLiteralTypes.ts, 6, 25))

let s = a[x]; // boolean
>s : Symbol(s, Decl(numericStringLiteralTypes.ts, 7, 7))
>a : Symbol(a, Decl(numericStringLiteralTypes.ts, 6, 12))
>x : Symbol(x, Decl(numericStringLiteralTypes.ts, 6, 25))
}

function f2(a: boolean[], x: number | `${number}`) {
>f2 : Symbol(f2, Decl(numericStringLiteralTypes.ts, 8, 1))
>a : Symbol(a, Decl(numericStringLiteralTypes.ts, 10, 12))
>x : Symbol(x, Decl(numericStringLiteralTypes.ts, 10, 25))

let s = a[x]; // boolean
>s : Symbol(s, Decl(numericStringLiteralTypes.ts, 11, 7))
>a : Symbol(a, Decl(numericStringLiteralTypes.ts, 10, 12))
>x : Symbol(x, Decl(numericStringLiteralTypes.ts, 10, 25))
}

type T10 = boolean[][`${number}`]; // boolean
>T10 : Symbol(T10, Decl(numericStringLiteralTypes.ts, 12, 1))

type T11 = boolean[][number | `${number}`]; // boolean
>T11 : Symbol(T11, Decl(numericStringLiteralTypes.ts, 14, 34))

type T20<T extends number | `${number}`> = T;
>T20 : Symbol(T20, Decl(numericStringLiteralTypes.ts, 15, 43))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 17, 9))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 17, 9))

type T21<T extends unknown[]> = { [K in keyof T]: T20<K> };
>T21 : Symbol(T21, Decl(numericStringLiteralTypes.ts, 17, 45))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 18, 9))
>K : Symbol(K, Decl(numericStringLiteralTypes.ts, 18, 35))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 18, 9))
>T20 : Symbol(T20, Decl(numericStringLiteralTypes.ts, 15, 43))
>K : Symbol(K, Decl(numericStringLiteralTypes.ts, 18, 35))

type Container<T> = {
>Container : Symbol(Container, Decl(numericStringLiteralTypes.ts, 18, 59))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 20, 15))

value: T
>value : Symbol(value, Decl(numericStringLiteralTypes.ts, 20, 21))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 20, 15))
}

type UnwrapContainers<T extends Container<unknown>[]> = { [K in keyof T]: T[K]['value'] };
>UnwrapContainers : Symbol(UnwrapContainers, Decl(numericStringLiteralTypes.ts, 22, 1))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 24, 22))
>Container : Symbol(Container, Decl(numericStringLiteralTypes.ts, 18, 59))
>K : Symbol(K, Decl(numericStringLiteralTypes.ts, 24, 59))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 24, 22))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 24, 22))
>K : Symbol(K, Decl(numericStringLiteralTypes.ts, 24, 59))

declare function createContainer<T extends unknown>(value: T): Container<T>;
>createContainer : Symbol(createContainer, Decl(numericStringLiteralTypes.ts, 24, 90))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 26, 33))
>value : Symbol(value, Decl(numericStringLiteralTypes.ts, 26, 52))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 26, 33))
>Container : Symbol(Container, Decl(numericStringLiteralTypes.ts, 18, 59))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 26, 33))

declare function f<T extends Container<unknown>[]>(containers: [...T], callback: (...values: UnwrapContainers<T>) => void): void;
>f : Symbol(f, Decl(numericStringLiteralTypes.ts, 26, 76))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 28, 19))
>Container : Symbol(Container, Decl(numericStringLiteralTypes.ts, 18, 59))
>containers : Symbol(containers, Decl(numericStringLiteralTypes.ts, 28, 51))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 28, 19))
>callback : Symbol(callback, Decl(numericStringLiteralTypes.ts, 28, 70))
>values : Symbol(values, Decl(numericStringLiteralTypes.ts, 28, 82))
>UnwrapContainers : Symbol(UnwrapContainers, Decl(numericStringLiteralTypes.ts, 22, 1))
>T : Symbol(T, Decl(numericStringLiteralTypes.ts, 28, 19))

const container1 = createContainer('hi')
>container1 : Symbol(container1, Decl(numericStringLiteralTypes.ts, 30, 5))
>createContainer : Symbol(createContainer, Decl(numericStringLiteralTypes.ts, 24, 90))

const container2 = createContainer(2)
>container2 : Symbol(container2, Decl(numericStringLiteralTypes.ts, 31, 5))
>createContainer : Symbol(createContainer, Decl(numericStringLiteralTypes.ts, 24, 90))

f([container1, container2], (value1, value2) => {
>f : Symbol(f, Decl(numericStringLiteralTypes.ts, 26, 76))
>container1 : Symbol(container1, Decl(numericStringLiteralTypes.ts, 30, 5))
>container2 : Symbol(container2, Decl(numericStringLiteralTypes.ts, 31, 5))
>value1 : Symbol(value1, Decl(numericStringLiteralTypes.ts, 33, 29))
>value2 : Symbol(value2, Decl(numericStringLiteralTypes.ts, 33, 36))

value1; // string
>value1 : Symbol(value1, Decl(numericStringLiteralTypes.ts, 33, 29))

value2; // number
>value2 : Symbol(value2, Decl(numericStringLiteralTypes.ts, 33, 36))

});

Loading