Skip to content

Error handling for model format in backend & frontend env #946

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
210 changes: 112 additions & 98 deletions backend/src/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,95 +16,106 @@

def get_llm(model: str):
"""Retrieve the specified language model based on the model name."""
env_key = "LLM_MODEL_CONFIG_" + model
model = model.lower().strip()
env_key = f"LLM_MODEL_CONFIG_{model}"
env_value = os.environ.get(env_key)
logging.info("Model: {}".format(env_key))

if not env_value:
err = f"Environment variable '{env_key}' is not defined as per format or missing"
logging.error(err)
raise Exception(err)

if "gemini" in model:
model_name = env_value
credentials, project_id = google.auth.default()
llm = ChatVertexAI(
model_name=model_name,
#convert_system_message_to_human=True,
credentials=credentials,
project=project_id,
temperature=0,
safety_settings={
HarmCategory.HARM_CATEGORY_UNSPECIFIED: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
},
)
elif "openai" in model:
model_name, api_key = env_value.split(",")
llm = ChatOpenAI(
api_key=api_key,
model=model_name,
temperature=0,
)
logging.info("Model: {}".format(env_key))
try:
if "gemini" in model:
model_name = env_value
credentials, project_id = google.auth.default()
llm = ChatVertexAI(
model_name=model_name,
#convert_system_message_to_human=True,
credentials=credentials,
project=project_id,
temperature=0,
safety_settings={
HarmCategory.HARM_CATEGORY_UNSPECIFIED: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
},
)
elif "openai" in model:
model_name, api_key = env_value.split(",")
llm = ChatOpenAI(
api_key=api_key,
model=model_name,
temperature=0,
)

elif "azure" in model:
model_name, api_endpoint, api_key, api_version = env_value.split(",")
llm = AzureChatOpenAI(
api_key=api_key,
azure_endpoint=api_endpoint,
azure_deployment=model_name, # takes precedence over model parameter
api_version=api_version,
temperature=0,
max_tokens=None,
timeout=None,
)
elif "azure" in model:
model_name, api_endpoint, api_key, api_version = env_value.split(",")
llm = AzureChatOpenAI(
api_key=api_key,
azure_endpoint=api_endpoint,
azure_deployment=model_name, # takes precedence over model parameter
api_version=api_version,
temperature=0,
max_tokens=None,
timeout=None,
)

elif "anthropic" in model:
model_name, api_key = env_value.split(",")
llm = ChatAnthropic(
api_key=api_key, model=model_name, temperature=0, timeout=None
)
elif "anthropic" in model:
model_name, api_key = env_value.split(",")
llm = ChatAnthropic(
api_key=api_key, model=model_name, temperature=0, timeout=None
)

elif "fireworks" in model:
model_name, api_key = env_value.split(",")
llm = ChatFireworks(api_key=api_key, model=model_name)

elif "groq" in model:
model_name, base_url, api_key = env_value.split(",")
llm = ChatGroq(api_key=api_key, model_name=model_name, temperature=0)

elif "bedrock" in model:
model_name, aws_access_key, aws_secret_key, region_name = env_value.split(",")
bedrock_client = boto3.client(
service_name="bedrock-runtime",
region_name=region_name,
aws_access_key_id=aws_access_key,
aws_secret_access_key=aws_secret_key,
)
elif "fireworks" in model:
model_name, api_key = env_value.split(",")
llm = ChatFireworks(api_key=api_key, model=model_name)

elif "groq" in model:
model_name, base_url, api_key = env_value.split(",")
llm = ChatGroq(api_key=api_key, model_name=model_name, temperature=0)

elif "bedrock" in model:
model_name, aws_access_key, aws_secret_key, region_name = env_value.split(",")
bedrock_client = boto3.client(
service_name="bedrock-runtime",
region_name=region_name,
aws_access_key_id=aws_access_key,
aws_secret_access_key=aws_secret_key,
)

llm = ChatBedrock(
client=bedrock_client, model_id=model_name, model_kwargs=dict(temperature=0)
)
llm = ChatBedrock(
client=bedrock_client, model_id=model_name, model_kwargs=dict(temperature=0)
)

elif "ollama" in model:
model_name, base_url = env_value.split(",")
llm = ChatOllama(base_url=base_url, model=model_name)
elif "ollama" in model:
model_name, base_url = env_value.split(",")
llm = ChatOllama(base_url=base_url, model=model_name)

elif "diffbot" in model:
#model_name = "diffbot"
model_name, api_key = env_value.split(",")
llm = DiffbotGraphTransformer(
diffbot_api_key=api_key,
extract_types=["entities", "facts"],
)

else:
model_name, api_endpoint, api_key = env_value.split(",")
llm = ChatOpenAI(
api_key=api_key,
base_url=api_endpoint,
model=model_name,
temperature=0,
)

elif "diffbot" in model:
#model_name = "diffbot"
model_name, api_key = env_value.split(",")
llm = DiffbotGraphTransformer(
diffbot_api_key=api_key,
extract_types=["entities", "facts"],
)

else:
model_name, api_endpoint, api_key = env_value.split(",")
llm = ChatOpenAI(
api_key=api_key,
base_url=api_endpoint,
model=model_name,
temperature=0,
)
except Exception as e:
err = f"Error while creating LLM '{model}': {str(e)}"
logging.error(err)
raise Exception(err)

logging.info(f"Model created - Model Version: {model}")
return llm, model_name

Expand Down Expand Up @@ -179,21 +190,24 @@ async def get_graph_document_list(


async def get_graph_from_llm(model, chunkId_chunkDoc_list, allowedNodes, allowedRelationship):

llm, model_name = get_llm(model)
combined_chunk_document_list = get_combined_chunks(chunkId_chunkDoc_list)
#combined_chunk_document_list = get_chunk_id_as_doc_metadata(chunkId_chunkDoc_list)

if allowedNodes is None or allowedNodes=="":
allowedNodes =[]
else:
allowedNodes = allowedNodes.split(',')
if allowedRelationship is None or allowedRelationship=="":
allowedRelationship=[]
else:
allowedRelationship = allowedRelationship.split(',')
try:
llm, model_name = get_llm(model)
combined_chunk_document_list = get_combined_chunks(chunkId_chunkDoc_list)

graph_document_list = await get_graph_document_list(
llm, combined_chunk_document_list, allowedNodes, allowedRelationship
)
return graph_document_list
if allowedNodes is None or allowedNodes=="":
allowedNodes =[]
else:
allowedNodes = allowedNodes.split(',')
if allowedRelationship is None or allowedRelationship=="":
allowedRelationship=[]
else:
allowedRelationship = allowedRelationship.split(',')

graph_document_list = await get_graph_document_list(
llm, combined_chunk_document_list, allowedNodes, allowedRelationship
)
return graph_document_list
except Exception as e:
err = f"Error during extracting graph with llm: {e}"
logging.error(err)
raise
1 change: 1 addition & 0 deletions backend/src/ragas_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
load_dotenv()

EMBEDDING_MODEL = os.getenv("RAGAS_EMBEDDING_MODEL")
logging.info(f"Loading embedding model '{EMBEDDING_MODEL}' for ragas evaluation")
EMBEDDING_FUNCTION, _ = load_embedding_model(EMBEDDING_MODEL)

def get_ragas_metrics(question: str, context: list, answer: list, model: str):
Expand Down
Loading