-
Notifications
You must be signed in to change notification settings - Fork 234
GSoC'22 Multi-tasking computer vision model: object detection, object segmentation and human pose detection #76
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
57c1038
1e69177
065f7f3
4a1b022
d909b65
356c3bd
0392713
9c23cf5
f01fefd
0168f30
b255e31
d0891cf
feabcc5
1cb40a7
c524cc6
2039902
36e9a59
d753ae4
070d050
b4e0ad9
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2022 Sida Yi <[email protected]> | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
# MCN | ||
|
||
Multitask-Centernet (MCN) is a multi-task network (MTN). Studies have shown that training with multiple tasks linked to each other can sometimes even improve the quality of training and prediction compared to single-task learning (STL). When the network receives the same type of input, it is likely to extract similar features. In this case, a shared backbone can take advantage of the similar semantics of these input features. | ||
|
||
Notes: | ||
- Model source: [here](https://drive.google.com/file/d/1HmYZ_HccS41kolqW9KHfcKEQKjXSBZnY/view?usp=sharing). | ||
- For details on training this model, please visit my home page | ||
|
||
## Demo | ||
|
||
Run the following command to try the demo: | ||
```shell | ||
# detect on an image | ||
python demo.py --input /path/to/image | ||
``` | ||
|
||
### Example outputs | ||
|
||
 | ||
|
||
 | ||
|
||
## License | ||
|
||
All files in this directory are licensed under [MIT License](./LICENSE). | ||
|
||
## Reference | ||
|
||
- https://arxiv.org/abs/2108.05060v2 | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
person | ||
nose | ||
left_eye | ||
right_eye | ||
left_ear | ||
right_ear | ||
left_shoulder | ||
right_shoulder | ||
left_elbow | ||
right_elbow | ||
left_wrist | ||
right_wrist | ||
left_hip | ||
right_hip | ||
left_knee | ||
right_knee | ||
left_ankle | ||
right_ankle |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
import cv2 | ||
import argparse | ||
import numpy as np | ||
from multitask_centernet import MCN | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--imgpath', type=str, default='images/d2645891.jpg', help="image path") | ||
parser.add_argument('--modelpath', type=str, default='MCN.onnx') | ||
args = parser.parse_args() | ||
|
||
mcn = MCN(args.modelpath) | ||
srcimg = cv2.imread(args.imgpath) | ||
srcimg = mcn.detect(srcimg) | ||
cv2.imwrite('result.png', srcimg) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
import cv2 | ||
import argparse | ||
import numpy as np | ||
|
||
config = {'person_conf_thres': 0.7, 'person_iou_thres': 0.45, 'kp_conf_thres': 0.5, | ||
'kp_iou_thres': 0.45, 'conf_thres_kp_person': 0.2, 'overwrite_tol': 25, | ||
'kp_face': [0, 1, 2, 3, 4], 'use_kp_dets': True, | ||
'segments': {1: [5, 6], 2: [5, 11], 3: [11, 12], 4: [12, 6], 5: [5, 7], 6: [7, 9], 7: [6, 8], 8: [8, 10], | ||
9: [11, 13], 10: [13, 15], 11: [12, 14], 12: [14, 16]}, | ||
'crowd_segments':{1: [0, 13], 2: [1, 13], 3: [0, 2], 4: [2, 4], 5: [1, 3], 6: [3, 5], 7: [0, 6], 8: [6, 7], 9: [7, 1], 10: [6, 8], 11: [8, 10], 12: [7, 9], 13: [9, 11], 14: [12, 13]}, | ||
'crowd_kp_face':[]} | ||
|
||
class MCN(): | ||
def __init__(self, modelpath): | ||
with open('class.names', 'rt') as f: | ||
self.classes = f.read().rstrip('\n').split('\n') | ||
self.lines = config['segments'] | ||
self.kp_face = config['kp_face'] | ||
|
||
self.num_classes = len(self.classes) | ||
self.inpHeight, self.inpWidth = 1280, 1280 | ||
anchors = [[19, 27, 44, 40, 38, 94], [96, 68, 86, 152, 180, 137], [140, 301, 303, 264, 238, 542], | ||
[436, 615, 739, 380, 925, 792]] | ||
self.stride = np.array([8., 16., 32., 64.]) | ||
self.nl = len(anchors) | ||
self.na = len(anchors[0]) // 2 | ||
self.grid = [np.zeros(1)] * self.nl | ||
self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2) | ||
self.net = cv2.dnn.readNet(modelpath) | ||
self._inputNames = '' | ||
self.last_ind = 5 + self.num_classes | ||
|
||
def resize_image(self, srcimg, keep_ratio=True, dynamic=False): | ||
top, left, newh, neww = 0, 0, self.inpWidth, self.inpHeight | ||
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]: | ||
hw_scale = srcimg.shape[0] / srcimg.shape[1] | ||
if hw_scale > 1: | ||
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale) | ||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA) | ||
if not dynamic: | ||
left = int((self.inpWidth - neww) * 0.5) | ||
img = cv2.copyMakeBorder(img, 0, 0, left, self.inpWidth - neww - left, cv2.BORDER_CONSTANT, | ||
value=(114, 114, 114)) # add border | ||
else: | ||
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth | ||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA) | ||
if not dynamic: | ||
top = int((self.inpHeight - newh) * 0.5) | ||
img = cv2.copyMakeBorder(img, top, self.inpHeight - newh - top, 0, 0, cv2.BORDER_CONSTANT, | ||
value=(114, 114, 114)) | ||
else: | ||
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA) | ||
return img, newh, neww, top, left | ||
|
||
def _make_grid(self, nx=20, ny=20): | ||
xv, yv = np.meshgrid(np.arange(ny), np.arange(nx)) | ||
return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32) | ||
|
||
def preprocess(self, img): | ||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | ||
img = img.astype(np.float32) / 255.0 | ||
return img | ||
|
||
def postprocess(self, frame, outs, padsize=None): | ||
frameHeight = frame.shape[0] | ||
frameWidth = frame.shape[1] | ||
newh, neww, padh, padw = padsize | ||
ratioh, ratiow = frameHeight / newh, frameWidth / neww | ||
# Scan through all the bounding boxes output from the network and keep only the | ||
# ones with high confidence scores. Assign the box's class label as the class with the highest score. | ||
|
||
person_confidences, kp_confidences = [], [] | ||
person_boxes, kp_boxes = [], [] | ||
person_classIds, kp_classIds = [], [] | ||
person_rowinds = [] | ||
for i in range(outs.shape[0]): | ||
detection = outs[i, :] | ||
scores = detection[5:self.last_ind] | ||
classId = np.argmax(scores) | ||
confidence = scores[classId] * detection[4] | ||
if classId == 0: | ||
if detection[4] > config['person_conf_thres'] and confidence > config['person_conf_thres']: | ||
center_x = int((detection[0] - padw) * ratiow) | ||
center_y = int((detection[1] - padh) * ratioh) | ||
width = int(detection[2] * ratiow) | ||
height = int(detection[3] * ratioh) | ||
left = int(center_x - width * 0.5) | ||
top = int(center_y - height * 0.5) | ||
|
||
person_confidences.append(float(confidence)) | ||
person_boxes.append([left, top, width, height]) | ||
person_classIds.append(classId) | ||
person_rowinds.append(i) | ||
else: | ||
if detection[4] > config['kp_conf_thres'] and confidence > config['kp_conf_thres']: | ||
center_x = int((detection[0] - padw) * ratiow) | ||
center_y = int((detection[1] - padh) * ratioh) | ||
width = int(detection[2] * ratiow) | ||
height = int(detection[3] * ratioh) | ||
left = int(center_x - width * 0.5) | ||
top = int(center_y - height * 0.5) | ||
|
||
kp_confidences.append(float(confidence)) | ||
kp_boxes.append([left, top, width, height]) | ||
kp_classIds.append(classId) | ||
|
||
# Perform non maximum suppression to eliminate redundant overlapping boxes with | ||
# lower confidences. | ||
# print(person_boxes) | ||
if len(person_boxes) == 0: | ||
return frame | ||
person_indices = cv2.dnn.NMSBoxes(person_boxes, person_confidences, config['person_conf_thres'], | ||
config['person_iou_thres']).flatten() | ||
kp_indices = cv2.dnn.NMSBoxes(kp_boxes, kp_confidences, config['kp_conf_thres'], | ||
config['kp_iou_thres']).flatten() | ||
|
||
poses = [] | ||
for i in person_indices: | ||
if person_confidences[i] > config['conf_thres_kp_person']: | ||
pose = outs[person_rowinds[i], self.last_ind:].reshape((-1, 2)) | ||
pose[:, 0] = (pose[:, 0] - padw) * ratiow | ||
pose[:, 1] = (pose[:, 1] - padh) * ratioh | ||
poses.append(pose) | ||
nd = len(poses) | ||
poses = np.array(poses) | ||
poses = np.concatenate((poses, np.zeros((nd, poses.shape[1], 1))), axis=-1) | ||
for j in kp_indices: | ||
box = kp_boxes[j] | ||
x = box[0] + 0.5 * box[2] | ||
y = box[1] + 0.5 * box[3] | ||
pt_id = kp_classIds[j] - 1 | ||
pose_kps = poses[:, pt_id, :] | ||
dist = np.linalg.norm(pose_kps[:, :2] - np.array([[x, y]]), axis=-1) | ||
kp_match = np.argmin(dist) | ||
if kp_confidences[j] > pose_kps[kp_match, 2] and dist[kp_match] < config['overwrite_tol']: | ||
poses[kp_match, pt_id, :] = np.array([x, y, kp_confidences[j]]) | ||
|
||
for i in person_indices: | ||
box = person_boxes[i] | ||
left = box[0] | ||
top = box[1] | ||
width = box[2] | ||
height = box[3] | ||
frame = self.drawPred(frame, person_classIds[i], person_confidences[i], left, top, left + width, | ||
top + height) | ||
|
||
for pose in poses: | ||
for seg in self.lines.values(): | ||
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1])) | ||
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1])) | ||
cv2.line(frame, pt1, pt2, (255, 0, 255), 1) | ||
for x, y, c in pose: | ||
if c > 0: | ||
cv2.circle(frame, (int(x), int(y)), 1, (0, 0, 255), 1) | ||
|
||
#for x, y, c in pose[self.kp_face]: | ||
#cv2.circle(frame, (int(x), int(y)), 1, (255, 0, 255), 1) | ||
# for i in kp_indices: | ||
# box = kp_boxes[i] | ||
# left = box[0] | ||
# top = box[1] | ||
# width = box[2] | ||
# height = box[3] | ||
# frame = self.drawPred(frame, kp_classIds[i], kp_confidences[i], left, top, left + width, top + height) | ||
return frame | ||
|
||
def drawPred(self, frame, classId, conf, left, top, right, bottom): | ||
# Draw a bounding box. | ||
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=1) | ||
|
||
label = '%.2f' % conf | ||
label = '%s:%s' % (self.classes[classId], label) | ||
|
||
# Display the label at the top of the bounding box | ||
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | ||
top = max(top, labelSize[1]) | ||
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED) | ||
cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), thickness=1) | ||
return frame | ||
|
||
def detect(self, srcimg): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Rename this function to def infer(self, image):
input_blob = self.preprocess(image)
self.model.setInput(input_blob)
output_blob = self.model.forward(self.model.getUnconnectedOutLayersNames())
results = self.postprocess(output_blob)
return results Here is another example for reference. |
||
img, newh, neww, padh, padw = self.resize_image(srcimg) | ||
blob = cv2.dnn.blobFromImage(img, scalefactor=1 / 255.0, swapRB=True) | ||
# blob = cv2.dnn.blobFromImage(self.preprocess(img)) | ||
# Sets the input to the network | ||
Comment on lines
+182
to
+185
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Move these lines into |
||
self.net.setInput(blob, self._inputNames) | ||
|
||
# Runs the forward pass to get output of the output layers | ||
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())[0].squeeze(axis=0) | ||
|
||
# inference output | ||
row_ind = 0 | ||
for i in range(self.nl): | ||
h, w = int(self.inpHeight / self.stride[i]), int(self.inpWidth / self.stride[i]) | ||
length = int(self.na * h * w) | ||
if self.grid[i].shape[2:4] != (h, w): | ||
self.grid[i] = self._make_grid(w, h) | ||
|
||
outs[row_ind:row_ind + length, 0:2] = (outs[row_ind:row_ind + length, 0:2] * 2. - 0.5 + np.tile( | ||
self.grid[i], (self.na, 1))) * int(self.stride[i]) | ||
outs[row_ind:row_ind + length, 2:4] = (outs[row_ind:row_ind + length, 2:4] * 2) ** 2 * np.repeat( | ||
self.anchor_grid[i], h * w, axis=0) | ||
|
||
self.num_coords = outs.shape[1] - self.last_ind | ||
outs[row_ind:row_ind + length, self.last_ind:] = outs[row_ind:row_ind + length, self.last_ind:] * 4. - 2. | ||
outs[row_ind:row_ind + length, self.last_ind:] *= np.tile(np.repeat(self.anchor_grid[i], h * w, axis=0), (1, self.num_coords//2)) | ||
outs[row_ind:row_ind + length, self.last_ind:] += np.tile(np.tile(self.grid[i], (self.na, 1)) * int(self.stride[i]), (1, self.num_coords//2)) | ||
row_ind += length | ||
Comment on lines
+191
to
+208
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Move these lines into postprocess |
||
srcimg = self.postprocess(srcimg, outs, padsize=(newh, neww, padh, padw)) | ||
return srcimg |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
NMSBoxes
returns a empty tuple if no person is detected. Callingflatten
on an empty tuple triggers error.Traceback (most recent call last):
Please doublecheck with images with no person and even no objects at all.