Skip to content

Fix RRF algorithm to match AI Search algo #25

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 18, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 21 additions & 21 deletions rag_documents_hybrid.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
# pip install sentence-transformers
import json
import os

Expand Down Expand Up @@ -72,24 +71,25 @@ def cosine_similarity(a, b):
return retrieved_documents


def reciprocal_rank_fusion(text_results, vector_results, alpha=0.5):
def reciprocal_rank_fusion(text_results, vector_results, k=60):
"""
Perform Reciprocal Rank Fusion on the results from text and vector searches.
Perform Reciprocal Rank Fusion (RRF) on the results from text and vector searches,
based on algorithm described here:
https://learn.microsoft.com/azure/search/hybrid-search-ranking#how-rrf-ranking-works
"""
text_ids = {doc["id"] for doc in text_results}
vector_ids = {doc["id"] for doc in vector_results}

combined_results = []
for doc in text_results:
if doc["id"] in vector_ids:
combined_results.append((doc, alpha))
else:
combined_results.append((doc, 1 - alpha))
for doc in vector_results:
if doc["id"] not in text_ids:
combined_results.append((doc, alpha))
combined_results.sort(key=lambda x: x[1], reverse=True)
return [doc for doc, _ in combined_results]
scores = {}

for i, doc in enumerate(text_results):
if doc["id"] not in scores:
scores[doc["id"]] = 0
scores[doc["id"]] += 1 / (i + k)
for i, doc in enumerate(vector_results):
if doc["id"] not in scores:
scores[doc["id"]] = 0
scores[doc["id"]] += 1 / (i + k)
scored_documents = sorted(scores.items(), key=lambda x: x[1], reverse=True)
retrieved_documents = [documents_by_id[doc_id] for doc_id, _ in scored_documents]
return retrieved_documents


def rerank(query, retrieved_documents):
Expand All @@ -108,13 +108,13 @@ def hybrid_search(query, limit):
"""
text_results = full_text_search(query, limit * 2)
vector_results = vector_search(query, limit * 2)
combined_results = reciprocal_rank_fusion(text_results, vector_results)
combined_results = rerank(query, combined_results)
return combined_results[:limit]
fused_results = reciprocal_rank_fusion(text_results, vector_results)
reranked_results = rerank(query, fused_results)
return reranked_results[:limit]


# Get the user question
user_question = "cute gray fuzzsters"
user_question = "cute gray fuzzy bee"

# Search the index for the user question
retrieved_documents = hybrid_search(user_question, limit=5)
Expand Down
42 changes: 21 additions & 21 deletions spanish/rag_documents_hybrid.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
# pip install sentence-transformers
import json
import os

Expand Down Expand Up @@ -72,24 +71,25 @@ def cosine_similarity(a, b):
return retrieved_documents


def reciprocal_rank_fusion(text_results, vector_results, alpha=0.5):
def reciprocal_rank_fusion(text_results, vector_results, k=60):
"""
Realizar la Fusión de Rango Recíproco en los resultados de búsquedas de texto y vectoriales.
Realizar la Fusión de Rango Recíproco (RRF) en los resultados de búsquedas de texto y vectoriales,
basado en el algoritmo descrito aqui:
https://learn.microsoft.com/azure/search/hybrid-search-ranking#how-rrf-ranking-works
"""
text_ids = {doc["id"] for doc in text_results}
vector_ids = {doc["id"] for doc in vector_results}

combined_results = []
for doc in text_results:
if doc["id"] in vector_ids:
combined_results.append((doc, alpha))
else:
combined_results.append((doc, 1 - alpha))
for doc in vector_results:
if doc["id"] not in text_ids:
combined_results.append((doc, alpha))
combined_results.sort(key=lambda x: x[1], reverse=True)
return [doc for doc, _ in combined_results]
scores = {}

for i, doc in enumerate(text_results):
if doc["id"] not in scores:
scores[doc["id"]] = 0
scores[doc["id"]] += 1 / (i + k)
for i, doc in enumerate(vector_results):
if doc["id"] not in scores:
scores[doc["id"]] = 0
scores[doc["id"]] += 1 / (i + k)
scored_documents = sorted(scores.items(), key=lambda x: x[1], reverse=True)
retrieved_documents = [documents_by_id[doc_id] for doc_id, _ in scored_documents]
return retrieved_documents


def rerank(query, retrieved_documents):
Expand All @@ -108,13 +108,13 @@ def hybrid_search(query, limit):
"""
text_results = full_text_search(query, limit * 2)
vector_results = vector_search(query, limit * 2)
combined_results = reciprocal_rank_fusion(text_results, vector_results)
combined_results = rerank(query, combined_results)
return combined_results[:limit]
fused_results = reciprocal_rank_fusion(text_results, vector_results)
reranked_results = rerank(query, fused_results)
return reranked_results[:limit]


# Obtener la pregunta del usuario
user_question = "gris y solitario"
user_question = "cual insecta es gris y velloso?"

# Buscar la pregunta del usuario en el índice
retrieved_documents = hybrid_search(user_question, limit=5)
Expand Down