Skip to content

DOC: Adding examples to update docstring (#16812) #17859

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 16, 2017
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 37 additions & 0 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -4154,6 +4154,43 @@ def update(self, other, join='left', overwrite=True, filter_func=None,
raise_conflict : boolean
If True, will raise an error if the DataFrame and other both
contain data in the same place.

Examples
--------
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f'],
'C': ['g', 'h', 'i']})
>>> df.update(new_df)
>>> df
A B
0 a d
1 b e
2 c f

>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
>>> new_column = pd.Series(['d', 'e', 'f'], name='B')
>>> df.update(new_column)
>>> df
A B
0 a d
1 b e
2 c f

If ``other`` contains NaNs the corresponding values are not updated
in the original dataframe.

>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
>>> new_df = pd.DataFrame({'B': ['d', np.nan, 'f']})
>>> df.update(new_df)
>>> df
A B
0 a d
1 b 2
2 c f

"""
import pandas.core.computation.expressions as expressions
# TODO: Support other joins
Expand Down
32 changes: 32 additions & 0 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -1780,6 +1780,38 @@ def update(self, other):
Parameters
----------
other : Series

Examples
--------
>>> s = pd.Series(['a', 'b', 'c', 'd'])
>>> s.update(pd.Series([1, 2, 3, 4]))
>>> s
0 1
1 2
2 3
3 4
dtype: object

>>> s = pd.Series(['a', 'b', 'c', 'd'])
>>> s.update(pd.Series([1, 4], index=[0, 3]))
>>> s
0 1
1 b
2 c
3 4
dtype: object

If ``other`` contains NaNs the corresponding values are not updated
in the original Series.

>>> s = pd.Series(['a', 'b', 'c', 'd'])
>>> s.update(pd.Series([1, 2, np.nan, 4]))
>>> s
0 1
1 2
2 c
3 4
dtype: object
"""
other = other.reindex_like(self)
mask = notna(other)
Expand Down