Skip to content

DOC: Fixed PR08 docstring errors in pandas.DataFrame #28655

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Sep 30, 2019
32 changes: 20 additions & 12 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -2066,7 +2066,7 @@ def to_feather(self, fname):
Parameters
----------
fname : str
string file path
String file path.
"""
from pandas.io.feather_format import to_feather

Expand Down Expand Up @@ -4772,6 +4772,7 @@ def drop_duplicates(self, subset=None, keep="first", inplace=False):
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
Determines which duplicates (if any) to keep.
- ``first`` : Drop duplicates except for the first occurrence.
- ``last`` : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.
Expand Down Expand Up @@ -4806,10 +4807,10 @@ def duplicated(self, subset=None, keep="first"):
Only consider certain columns for identifying duplicates, by
default use all of the columns
keep : {'first', 'last', False}, default 'first'
- ``first`` : Mark duplicates as ``True`` except for the
first occurrence.
- ``last`` : Mark duplicates as ``True`` except for the
last occurrence.
Determines which duplicates (if any) to mark.

- ``first`` : Mark duplicates as ``True`` except for the first occurrence.
- ``last`` : Mark duplicates as ``True`` except for the last occurrence.
- False : Mark all duplicates as ``True``.

Returns
Expand Down Expand Up @@ -6233,8 +6234,8 @@ def unstack(self, level=-1, fill_value=None):
----------
level : int, str, or list of these, default -1 (last level)
Level(s) of index to unstack, can pass level name
fill_value : replace NaN with this value if the unstack produces
missing values
fill_value : int, string or dict
Replace NaN with this value if the unstack produces missing values

Returns
-------
Expand Down Expand Up @@ -6665,6 +6666,8 @@ def apply(
by result_type='broadcast'.

raw : bool, default False
Determines if row or column is passed as a Series or ndarry object:

* ``False`` : passes each row or column as a Series to the
function.
* ``True`` : the passed function will receive ndarray objects
Expand Down Expand Up @@ -7357,6 +7360,8 @@ def corr(self, method="pearson", min_periods=1):
Parameters
----------
method : {'pearson', 'kendall', 'spearman'} or callable
Method of correlation:

* pearson : standard correlation coefficient
* kendall : Kendall Tau correlation coefficient
* spearman : Spearman rank correlation
Expand Down Expand Up @@ -7556,10 +7561,13 @@ def corrwith(self, other, axis=0, drop=False, method="pearson"):
other : DataFrame, Series
Object with which to compute correlations.
axis : {0 or 'index', 1 or 'columns'}, default 0
0 or 'index' to compute column-wise, 1 or 'columns' for row-wise.
The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for
row-wise.
drop : bool, default False
Drop missing indices from result.
method : {'pearson', 'kendall', 'spearman'} or callable
Method of correlation:

* pearson : standard correlation coefficient
* kendall : Kendall Tau correlation coefficient
* spearman : Spearman rank correlation
Expand Down Expand Up @@ -7939,8 +7947,8 @@ def idxmin(self, axis=0, skipna=True):
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
0 or 'index' for row-wise, 1 or 'columns' for column-wise
skipna : bool, default True
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.

Expand Down Expand Up @@ -7976,8 +7984,8 @@ def idxmax(self, axis=0, skipna=True):
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
0 or 'index' for row-wise, 1 or 'columns' for column-wise
skipna : bool, default True
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.

Expand Down
22 changes: 11 additions & 11 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -2559,10 +2559,10 @@ def to_msgpack(self, path_or_buf=None, encoding="utf-8", **kwargs):
path : str, buffer-like, or None
Destination for the serialized object.
If None, return generated bytes
append : bool whether to append to an existing msgpack
(default is False)
compress : type of compressor (zlib or blosc), default to None (no
compression)
append : bool, default False
Whether to append to an existing msgpack.
compress : str, default None
Type of compressor (zlib, blosc or None).

Returns
-------
Expand Down Expand Up @@ -2797,10 +2797,10 @@ def to_clipboard(self, excel=True, sep=None, **kwargs):
Parameters
----------
excel : bool, default True
- True, use the provided separator, writing in a csv format for
allowing easy pasting into excel.
- False, write a string representation of the object to the
clipboard.
Produce output in a csv format for easy pasting into excel.

- True, use the provided separator for csv pasting.
- False, write a string representation of the object to the clipboard.

sep : str, default ``'\t'``
Field delimiter.
Expand Down Expand Up @@ -5024,15 +5024,15 @@ def sample(
Parameters
----------
func : function
function to apply to the %(klass)s.
Function to apply to the %(klass)s.
``args``, and ``kwargs`` are passed into ``func``.
Alternatively a ``(callable, data_keyword)`` tuple where
``data_keyword`` is a string indicating the keyword of
``callable`` that expects the %(klass)s.
args : iterable, optional
positional arguments passed into ``func``.
Positional arguments passed into ``func``.
kwargs : mapping, optional
a dictionary of keyword arguments passed into ``func``.
A dictionary of keyword arguments passed into ``func``.

Returns
-------
Expand Down
4 changes: 3 additions & 1 deletion pandas/plotting/_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -514,6 +514,8 @@ class PlotAccessor(PandasObject):
Allows plotting of one column versus another. Only used if data is a
DataFrame.
kind : str
The kind of plot to produce:

- 'line' : line plot (default)
- 'bar' : vertical bar plot
- 'barh' : horizontal bar plot
Expand All @@ -537,7 +539,7 @@ class PlotAccessor(PandasObject):
legend : False/True/'reverse'
Place legend on axis subplots
style : list or dict
matplotlib line style per column
The matplotlib line style per column
logx : bool or 'sym', default False
Use log scaling or symlog scaling on x axis
.. versionchanged:: 0.25.0
Expand Down