Skip to content

DOC: Fixing EX01 - added examples #53240

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 0 additions & 7 deletions ci/code_checks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -81,10 +81,8 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
MSG='Partially validate docstrings (EX01)' ; echo $MSG
$BASE_DIR/scripts/validate_docstrings.py --format=actions --errors=EX01 --ignore_functions \
pandas.Series.backfill \
pandas.Series.bfill \
pandas.Series.ffill \
pandas.Series.pad \
pandas.Series.argsort \
pandas.Series.reorder_levels \
pandas.Series.ravel \
pandas.Series.first_valid_index \
Expand Down Expand Up @@ -424,7 +422,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
pandas.core.groupby.SeriesGroupBy.get_group \
pandas.core.groupby.DataFrameGroupBy.all \
pandas.core.groupby.DataFrameGroupBy.any \
pandas.core.groupby.DataFrameGroupBy.bfill \
pandas.core.groupby.DataFrameGroupBy.count \
pandas.core.groupby.DataFrameGroupBy.cummax \
pandas.core.groupby.DataFrameGroupBy.cummin \
Expand All @@ -447,7 +444,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
pandas.core.groupby.DataFrameGroupBy.var \
pandas.core.groupby.SeriesGroupBy.all \
pandas.core.groupby.SeriesGroupBy.any \
pandas.core.groupby.SeriesGroupBy.bfill \
pandas.core.groupby.SeriesGroupBy.count \
pandas.core.groupby.SeriesGroupBy.cummax \
pandas.core.groupby.SeriesGroupBy.cummin \
Expand Down Expand Up @@ -517,10 +513,7 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
pandas.api.extensions.ExtensionArray.shape \
pandas.api.extensions.ExtensionArray.tolist \
pandas.DataFrame.columns \
pandas.DataFrame.iterrows \
pandas.DataFrame.pipe \
pandas.DataFrame.backfill \
pandas.DataFrame.bfill \
pandas.DataFrame.ffill \
pandas.DataFrame.pad \
pandas.DataFrame.swapaxes \
Expand Down
27 changes: 15 additions & 12 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -1371,18 +1371,7 @@ def iterrows(self) -> Iterable[tuple[Hashable, Series]]:
-----
1. Because ``iterrows`` returns a Series for each row,
it does **not** preserve dtypes across the rows (dtypes are
preserved across columns for DataFrames). For example,

>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
>>> row = next(df.iterrows())[1]
>>> row
int 1.0
float 1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype)
float64
>>> print(df['int'].dtype)
int64
preserved across columns for DataFrames).

To preserve dtypes while iterating over the rows, it is better
to use :meth:`itertuples` which returns namedtuples of the values
Expand All @@ -1392,6 +1381,20 @@ def iterrows(self) -> Iterable[tuple[Hashable, Series]]:
This is not guaranteed to work in all cases. Depending on the
data types, the iterator returns a copy and not a view, and writing
to it will have no effect.

Examples
--------

>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
>>> row = next(df.iterrows())[1]
>>> row
int 1.0
float 1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype)
float64
>>> print(df['int'].dtype)
int64
"""
columns = self.columns
klass = self._constructor_sliced
Expand Down
46 changes: 46 additions & 0 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -7262,6 +7262,52 @@ def bfill(
-------
{klass} or None
Object with missing values filled or None if ``inplace=True``.

Examples
--------
For Series:

>>> s = pd.Series([1, None, None, 2])
>>> s.bfill()
0 1.0
1 2.0
2 2.0
3 2.0
dtype: float64
>>> s.bfill(downcast='infer')
0 1
1 2
2 2
3 2
dtype: int64
>>> s.bfill(limit=1)
0 1.0
1 NaN
2 2.0
3 2.0
dtype: float64

With DataFrame:

>>> df = pd.DataFrame({{'A': [1, None, None, 4], 'B': [None, 5, None, 7]}})
>>> df
A B
0 1.0 NaN
1 NaN 5.0
2 NaN NaN
3 4.0 7.0
>>> df.bfill()
A B
0 1.0 5.0
1 4.0 5.0
2 4.0 7.0
3 4.0 7.0
>>> df.bfill(downcast='infer', limit=1)
A B
0 1.0 5
1 NaN 5
2 4.0 7
3 4.0 7
"""
return self.fillna(
method="bfill", axis=axis, inplace=inplace, limit=limit, downcast=downcast
Expand Down
55 changes: 55 additions & 0 deletions pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -3019,6 +3019,61 @@ def bfill(self, limit: int | None = None):
DataFrame.bfill: Backward fill the missing values in the dataset.
Series.fillna: Fill NaN values of a Series.
DataFrame.fillna: Fill NaN values of a DataFrame.

Examples
--------

With Series:

>>> index = ['Falcon', 'Falcon', 'Parrot', 'Parrot', 'Parrot']
>>> s = pd.Series([None, 1, None, None, 3], index=index)
>>> s
Falcon NaN
Falcon 1.0
Parrot NaN
Parrot NaN
Parrot 3.0
dtype: float64
>>> s.groupby(level=0).bfill()
Falcon 1.0
Falcon 1.0
Parrot 3.0
Parrot 3.0
Parrot 3.0
dtype: float64
>>> s.groupby(level=0).bfill(limit=1)
Falcon 1.0
Falcon 1.0
Parrot NaN
Parrot 3.0
Parrot 3.0
dtype: float64

With DataFrame:

>>> df = pd.DataFrame({'A': [1, None, None, None, 4],
... 'B': [None, None, 5, None, 7]}, index=index)
>>> df
A B
Falcon 1.0 NaN
Falcon NaN NaN
Parrot NaN 5.0
Parrot NaN NaN
Parrot 4.0 7.0
>>> df.groupby(level=0).bfill()
A B
Falcon 1.0 NaN
Falcon NaN NaN
Parrot 4.0 5.0
Parrot 4.0 7.0
Parrot 4.0 7.0
>>> df.groupby(level=0).bfill(limit=1)
A B
Falcon 1.0 NaN
Falcon NaN NaN
Parrot NaN 5.0
Parrot 4.0 7.0
Parrot 4.0 7.0
"""
return self._fill("bfill", limit=limit)

Expand Down
9 changes: 9 additions & 0 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -3811,6 +3811,15 @@ def argsort(
See Also
--------
numpy.ndarray.argsort : Returns the indices that would sort this array.

Examples
--------
>>> s = pd.Series([3, 2, 1])
>>> s.argsort()
0 2
1 1
2 0
dtype: int64
"""
values = self._values
mask = isna(values)
Expand Down