Skip to content

Added a PartialOrder transform #444

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions docs/api_reference.rst
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,16 @@ Distributions
histogram_approximation


Transforms
==========

.. currentmodule:: pymc_extras.distributions.transforms
.. autosummary::
:toctree: generated/

PartialOrder


Utils
=====

Expand Down
2 changes: 2 additions & 0 deletions pymc_extras/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from pymc_extras.distributions.histogram_utils import histogram_approximation
from pymc_extras.distributions.multivariate import R2D2M2CP
from pymc_extras.distributions.timeseries import DiscreteMarkovChain
from pymc_extras.distributions.transforms import PartialOrder

__all__ = [
"Chi",
Expand All @@ -37,4 +38,5 @@
"R2D2M2CP",
"Skellam",
"histogram_approximation",
"PartialOrder",
]
3 changes: 3 additions & 0 deletions pymc_extras/distributions/transforms/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from pymc_extras.distributions.transforms.partial_order import PartialOrder

__all__ = ["PartialOrder"]
227 changes: 227 additions & 0 deletions pymc_extras/distributions/transforms/partial_order.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,227 @@
# Copyright 2025 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytensor.tensor as pt

from pymc.logprob.transforms import Transform

__all__ = ["PartialOrder"]


def dtype_minval(dtype):
"""Find the minimum value for a given dtype"""
return np.iinfo(dtype).min if np.issubdtype(dtype, np.integer) else np.finfo(dtype).min


def padded_where(x, to_len, padval=-1):
"""A padded version of np.where"""
w = np.where(x)
return np.concatenate([w[0], np.full(to_len - len(w[0]), padval)])


class PartialOrder(Transform):
"""Create a PartialOrder transform

A more flexible version of the pymc ordered transform that
allows specifying a (strict) partial order on the elements.

Examples
--------
.. code:: python

import numpy as np
import pymc as pm
import pymc_extras as pmx

# Define two partial orders on 4 elements
# am[i,j] = 1 means i < j
adj_mats = np.array([
# 0 < {1, 2} < 3
[[0, 1, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]],

# 1 < 0 < 3 < 2
[[0, 0, 0, 1],
[1, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 1, 0]],
])

# Create the partial order from the adjacency matrices
po = pmx.PartialOrder(adj_mats)

with pm.Model() as model:
# Generate 3 samples from both partial orders
pm.Normal("po_vals", shape=(3,2,4), transform=po,
initval=po.initvals((3,2,4)))

idata = pm.sample()

# Verify that for first po, the zeroth element is always the smallest
assert (idata.posterior['po_vals'][:,:,:,0,0] <
idata.posterior['po_vals'][:,:,:,0,1:]).all()

# Verify that for second po, the second element is always the largest
assert (idata.posterior['po_vals'][:,:,:,1,2] >=
idata.posterior['po_vals'][:,:,:,1,:]).all()

Technical notes
----------------
Partial order needs to be strict, i.e. without equalities.
A DAG defining the partial order is sufficient, as transitive closure is automatically computed.
Code works in O(N*D) in runtime, but takes O(N^3) in initialization,
where N is the number of nodes in the dag and D is the maximum
in-degree of a node in the transitive reduction.
"""

name = "partial_order"

def __init__(self, adj_mat):
"""
Initialize the PartialOrder transform

Parameters
----------
adj_mat: ndarray
adjacency matrix for the DAG that generates the partial order,
where ``adj_mat[i][j] = 1`` denotes ``i < j``.
Note this also accepts multiple DAGs if RV is multidimensional
"""

# Basic input checks
if adj_mat.ndim < 2:
raise ValueError("Adjacency matrix must have at least 2 dimensions")
if adj_mat.shape[-2] != adj_mat.shape[-1]:
raise ValueError("Adjacency matrix is not square")
if adj_mat.min() != 0 or adj_mat.max() != 1:
raise ValueError("Adjacency matrix must contain only 0s and 1s")

# Create index over the first ellipsis dimensions
idx = np.ix_(*[np.arange(s) for s in adj_mat.shape[:-2]])

# Transitive closure using Floyd-Warshall
tc = adj_mat.astype(bool)
for k in range(tc.shape[-1]):
tc |= np.logical_and(tc[..., :, k, None], tc[..., None, k, :])

# Check if the dag is acyclic
if np.any(tc.diagonal(axis1=-2, axis2=-1)):
raise ValueError("Partial order contains equalities")

# Transitive reduction using the closure
# This gives the minimum description of the partial order
# This is to minmax the input degree
adj_mat = tc * (1 - np.matmul(tc, tc))

# Find the maximum in-degree of the reduced dag
dag_idim = adj_mat.sum(axis=-2).max()

# Topological sort
ts_inds = np.zeros(adj_mat.shape[:-1], dtype=int)
dm = adj_mat.copy()
for i in range(adj_mat.shape[1]):
assert dm.sum(axis=-2).min() == 0 # DAG is acyclic
nind = np.argmin(dm.sum(axis=-2), axis=-1)
dm[(*idx, slice(None), nind)] = 1 # Make nind not show up again
dm[(*idx, nind, slice(None))] = 0 # Allow it's children to show
ts_inds[(*idx, i)] = nind
self.ts_inds = ts_inds

# Change the dag to adjacency lists (with -1 for NA)
dag_T = np.apply_along_axis(padded_where, axis=-2, arr=adj_mat, padval=-1, to_len=dag_idim)
self.dag = np.swapaxes(dag_T, -2, -1)
self.is_start = np.all(self.dag[..., :, :] == -1, axis=-1)

def initvals(self, shape=None, lower=-1, upper=1):
"""
Create a set of appropriate initial values for the variable.
NB! It is important that proper initial values are used,
as only properly ordered values are in the range of the transform.

Parameters
----------
shape: tuple, default None
shape of the initial values. If None, adj_mat[:-1] is used
lower: float, default -1
lower bound for the initial values
upper: float, default 1
upper bound for the initial values

Returns
-------
vals: ndarray
initial values for the transformed variable
"""

if shape is None:
shape = self.dag.shape[:-1]

if shape[-len(self.dag.shape[:-1]) :] != self.dag.shape[:-1]:
raise ValueError("Shape must match the shape of the adjacency matrix")

# Create the initial values
vals = np.linspace(lower, upper, self.dag.shape[-2])
inds = np.argsort(self.ts_inds, axis=-1)
ivals = vals[inds]

# Expand the initial values to the extra dimensions
extra_dims = shape[: -len(self.dag.shape[:-1])]
ivals = np.tile(ivals, extra_dims + tuple([1] * len(self.dag.shape[:-1])))

return ivals

def backward(self, value, *inputs):
minv = dtype_minval(value.dtype)
x = pt.concatenate(
[pt.zeros_like(value), pt.full(value.shape[:-1], minv)[..., None]], axis=-1
)

# Indices to allow broadcasting the max over the last dimension
idx = np.ix_(*[np.arange(s) for s in self.dag.shape[:-2]])
idx2 = tuple(np.tile(i[:, None], self.dag.shape[-1]) for i in idx)

# Has to be done stepwise as next steps depend on previous values
# Also has to be done in topological order, hence the ts_inds
for i in range(self.dag.shape[-2]):
tsi = self.ts_inds[..., i]
if len(tsi.shape) == 0:
tsi = int(tsi) # if shape 0, it's a scalar
ni = (*idx, tsi) # i-th node in topological order
eni = (Ellipsis, *ni)
ist = self.is_start[ni]

mval = pt.max(x[(Ellipsis, *idx2, self.dag[ni])], axis=-1)
x = pt.set_subtensor(x[eni], ist * value[eni] + (1 - ist) * (mval + pt.exp(value[eni])))
return x[..., :-1]

def forward(self, value, *inputs):
y = pt.zeros_like(value)

minv = dtype_minval(value.dtype)
vx = pt.concatenate([value, pt.full(value.shape[:-1], minv)[..., None]], axis=-1)

# Indices to allow broadcasting the max over the last dimension
idx = np.ix_(*[np.arange(s) for s in self.dag.shape[:-2]])
idx = tuple(np.tile(i[:, None, None], self.dag.shape[-2:]) for i in idx)

y = self.is_start * value + (1 - self.is_start) * (
pt.log(value - pt.max(vx[(Ellipsis, *idx, self.dag[..., :])], axis=-1))
)

return y

def log_jac_det(self, value, *inputs):
return pt.sum(value * (1 - self.is_start), axis=-1)
77 changes: 77 additions & 0 deletions tests/distributions/test_transform.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Copyright 2025 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pymc as pm

from pymc_extras.distributions.transforms import PartialOrder


class TestPartialOrder:
adj_mats = np.array(
[
# 0 < {1, 2} < 3
[[0, 1, 1, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 0]],
# 1 < 0 < 3 < 2
[[0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0]],
]
)

valid_values = np.array([[0, 2, 1, 3], [1, 0, 3, 2]], dtype=float)

# Test that forward and backward are inverses of eachother
# And that it works when extra dimensions are added in data
def test_forward_backward_dimensionality(self):
po = PartialOrder(self.adj_mats)
po0 = PartialOrder(self.adj_mats[0])
vv = self.valid_values
vv0 = self.valid_values[0]

testsets = [
(vv, po),
(po.initvals(), po),
(vv0, po0),
(po0.initvals(), po0),
(np.tile(vv0, (2, 1)), po0),
(np.tile(vv0, (2, 3, 2, 1)), po0),
(np.tile(vv, (2, 3, 2, 1, 1)), po),
]

for vv, po in testsets:
fw = po.forward(vv)
bw = po.backward(fw)
np.testing.assert_allclose(bw.eval(), vv)

def test_sample_model(self):
po = PartialOrder(self.adj_mats)
with pm.Model() as model:
x = pm.Normal(
"x",
size=(3, 2, 4),
transform=po,
initval=po.initvals(shape=(3, 2, 4), lower=-1, upper=1),
)
idata = pm.sample()

# Check that the order constraints are satisfied
# Move chain, draw and "3" dimensions to the back
xvs = idata.posterior.x.values.transpose(3, 4, 0, 1, 2)
x0 = xvs[0] # 0 < {1, 2} < 3
assert (
(x0[0] < x0[1]).all()
and (x0[0] < x0[2]).all()
and (x0[1] < x0[3]).all()
and (x0[2] < x0[3]).all()
)
x1 = xvs[1] # 1 < 0 < 3 < 2
assert (x1[1] < x1[0]).all() and (x1[0] < x1[3]).all() and (x1[3] < x1[2]).all()
Loading