Skip to content

Parametrize Binomial and Categorical distributions via logit_p #5637

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Mar 21, 2022
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 18 additions & 2 deletions pymc/distributions/discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,15 @@ class Binomial(Discrete):
rv_op = binomial

@classmethod
def dist(cls, n, p, *args, **kwargs):
def dist(cls, n, p=None, logit_p=None, *args, **kwargs):
if p is not None and logit_p is not None:
raise ValueError("Incompatible parametrization. Can't specify both p and logit_p.")
elif p is None and logit_p is None:
raise ValueError("Incompatible parametrization. Must specify either p or logit_p.")

if logit_p is not None:
p = at.sigmoid(logit_p)

n = at.as_tensor_variable(intX(n))
p = at.as_tensor_variable(floatX(p))
return super().dist([n, p], **kwargs)
Expand Down Expand Up @@ -1252,7 +1260,15 @@ class Categorical(Discrete):
rv_op = categorical

@classmethod
def dist(cls, p, **kwargs):
def dist(cls, p=None, logit_p=None, **kwargs):
if p is not None and logit_p is not None:
raise ValueError("Incompatible parametrization. Can't specify both p and logit_p.")
elif p is None and logit_p is None:
raise ValueError("Incompatible parametrization. Must specify either p or logit_p.")

if logit_p is not None:
p = pm.math.softmax(logit_p, axis=-1)

if isinstance(p, np.ndarray) or isinstance(p, list):
if (np.asarray(p) < 0).any():
raise ValueError(f"Negative `p` parameters are not valid, got: {p}")
Expand Down
41 changes: 41 additions & 0 deletions pymc/tests/test_distributions_random.py
Original file line number Diff line number Diff line change
Expand Up @@ -1005,6 +1005,25 @@ class TestBinomial(BaseTestDistributionRandom):
checks_to_run = ["check_pymc_params_match_rv_op"]


class TestLogitBinomial(BaseTestDistributionRandom):
pymc_dist = pm.Binomial
pymc_dist_params = {"n": 100, "logit_p": 2.197224577}
expected_rv_op_params = {"n": 100, "p": 0.9}
tests_to_run = ["check_pymc_params_match_rv_op"]

@pytest.mark.parametrize(
"n, p, logit_p, expected",
[
(5, None, None, "Must specify either p or logit_p."),
(5, 0.5, 0.5, "Can't specify both p and logit_p."),
],
)
def test_binomial_init_fail(self, n, p, logit_p, expected):
with pm.Model() as model:
with pytest.raises(ValueError, match=f"Incompatible parametrization. {expected}"):
pm.Binomial("x", n=n, p=p, logit_p=logit_p)


class TestNegativeBinomial(BaseTestDistributionRandom):
pymc_dist = pm.NegativeBinomial
pymc_dist_params = {"n": 100, "p": 0.33}
Expand Down Expand Up @@ -1410,6 +1429,28 @@ class TestCategorical(BaseTestDistributionRandom):
]


class TestLogitCategorical(BaseTestDistributionRandom):
pymc_dist = pm.Categorical
pymc_dist_params = {"logit_p": np.array([-0.944461608841, 0.489548225319, -2.197224577336])}
expected_rv_op_params = {"p": np.array([0.28, 0.62, 0.10])}
tests_to_run = [
"check_pymc_params_match_rv_op",
"check_rv_size",
]

@pytest.mark.parametrize(
"p, logit_p, expected",
[
(None, None, "Must specify either p or logit_p."),
(0.5, 0.5, "Can't specify both p and logit_p."),
],
)
def test_categorical_init_fail(self, p, logit_p, expected):
with pm.Model() as model:
with pytest.raises(ValueError, match=f"Incompatible parametrization. {expected}"):
pm.Categorical("x", p=p, logit_p=logit_p)


class TestGeometric(BaseTestDistributionRandom):
pymc_dist = pm.Geometric
pymc_dist_params = {"p": 0.9}
Expand Down