Skip to content

Revert "Add start_sigma to ADVI (#6096)" #6130

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 0 additions & 22 deletions pymc/tests/test_variational_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -571,28 +571,6 @@ def test_fit_oo(inference, fit_kwargs, simple_model_data):
np.testing.assert_allclose(np.std(trace.posterior["mu"]), np.sqrt(1.0 / d), rtol=0.2)


def test_fit_start(inference_spec, simple_model):
mu_init = 17
mu_sigma_init = 13

with simple_model:
if type(inference_spec()) == ADVI:
has_start_sigma = True
else:
has_start_sigma = False

kw = {"start": {"mu": mu_init}}
if has_start_sigma:
kw.update({"start_sigma": {"mu": mu_sigma_init}})

with simple_model:
inference = inference_spec(**kw)
trace = inference.fit(n=0).sample(10000)
np.testing.assert_allclose(np.mean(trace.posterior["mu"]), mu_init, rtol=0.05)
if has_start_sigma:
np.testing.assert_allclose(np.std(trace.posterior["mu"]), mu_sigma_init, rtol=0.05)


def test_profile(inference):
inference.run_profiling(n=100).summary()

Expand Down
21 changes: 3 additions & 18 deletions pymc/variational/approximations.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,27 +67,12 @@ def std(self):
def __init_group__(self, group):
super().__init_group__(group)
if not self._check_user_params():
self.shared_params = self.create_shared_params(
self._kwargs.get("start", None), self._kwargs.get("start_sigma", None)
)
self.shared_params = self.create_shared_params(self._kwargs.get("start", None))
self._finalize_init()

def create_shared_params(self, start=None, start_sigma=None):
# NOTE: `Group._prepare_start` uses `self.model.free_RVs` to identify free variables and
# `DictToArrayBijection` to turn them into a flat array, while `Approximation.rslice` assumes that the free
# variables are given by `self.group` and that the mapping between original variables and flat array is given
# by `self.ordering`. In the cases I looked into these turn out to be the same, but there may be edge cases or
# future code changes that break this assumption.
def create_shared_params(self, start=None):
start = self._prepare_start(start)
rho1 = np.zeros((self.ddim,))

if start_sigma is not None:
for name, slice_, *_ in self.ordering.values():
sigma = start_sigma.get(name)
if sigma is not None:
rho1[slice_] = np.log(np.expm1(np.abs(sigma)))
rho = rho1

rho = np.zeros((self.ddim,))
return {
"mu": aesara.shared(pm.floatX(start), "mu"),
"rho": aesara.shared(pm.floatX(rho), "rho"),
Expand Down
29 changes: 8 additions & 21 deletions pymc/variational/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -257,9 +257,7 @@ def _infmean(input_array):
)
)
else:
if n == 0:
logger.info(f"Initialization only")
elif n < 10:
if n < 10:
logger.info(f"Finished [100%]: Loss = {scores[-1]:,.5g}")
else:
avg_loss = _infmean(scores[max(0, i - 1000) : i + 1])
Expand Down Expand Up @@ -435,10 +433,8 @@ class ADVI(KLqp):
random_seed: None or int
leave None to use package global RandomStream or other
valid value to create instance specific one
start: `dict[str, np.ndarray]` or `StartDict`
start: `Point`
starting point for inference
start_sigma: `dict[str, np.ndarray]`
starting standard deviation for inference, only available for method 'advi'

References
----------
Expand Down Expand Up @@ -468,7 +464,7 @@ class FullRankADVI(KLqp):
random_seed: None or int
leave None to use package global RandomStream or other
valid value to create instance specific one
start: `dict[str, np.ndarray]` or `StartDict`
start: `Point`
starting point for inference

References
Expand Down Expand Up @@ -536,11 +532,13 @@ class SVGD(ImplicitGradient):
kernel function for KSD :math:`f(histogram) -> (k(x,.), \nabla_x k(x,.))`
temperature: float
parameter responsible for exploration, higher temperature gives more broad posterior estimate
start: `dict[str, np.ndarray]` or `StartDict`
start: `dict`
initial point for inference
random_seed: None or int
leave None to use package global RandomStream or other
valid value to create instance specific one
start: `Point`
starting point for inference
kwargs: other keyword arguments passed to estimator

References
Expand Down Expand Up @@ -631,11 +629,7 @@ def __init__(self, approx=None, estimator=KSD, kernel=test_functions.rbf, **kwar
"is often **underestimated** when using temperature = 1."
)
if approx is None:
approx = FullRank(
model=kwargs.pop("model", None),
random_seed=kwargs.pop("random_seed", None),
start=kwargs.pop("start", None),
)
approx = FullRank(model=kwargs.pop("model", None))
super().__init__(estimator=estimator, approx=approx, kernel=kernel, **kwargs)

def fit(
Expand Down Expand Up @@ -666,7 +660,6 @@ def fit(
model=None,
random_seed=None,
start=None,
start_sigma=None,
inf_kwargs=None,
**kwargs,
):
Expand All @@ -691,10 +684,8 @@ def fit(
valid value to create instance specific one
inf_kwargs: dict
additional kwargs passed to :class:`Inference`
start: `dict[str, np.ndarray]` or `StartDict`
start: `Point`
starting point for inference
start_sigma: `dict[str, np.ndarray]`
starting standard deviation for inference, only available for method 'advi'

Other Parameters
----------------
Expand Down Expand Up @@ -737,10 +728,6 @@ def fit(
inf_kwargs["random_seed"] = random_seed
if start is not None:
inf_kwargs["start"] = start
if start_sigma is not None:
if method != "advi":
raise NotImplementedError("start_sigma is only available for method advi")
inf_kwargs["start_sigma"] = start_sigma
if model is None:
model = pm.modelcontext(model)
_select = dict(advi=ADVI, fullrank_advi=FullRankADVI, svgd=SVGD, asvgd=ASVGD)
Expand Down