Skip to content

Atan2 converter #1381

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Oct 5, 2022
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 89 additions & 0 deletions core/conversion/converters/impl/element_wise.cpp
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
#include <c10/util/MathConstants.h>
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

small style thing, I know other files might use <> to include torch, libraries but use "" for anything other than stdlib

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I updated the <> notation to "" on both this new import, as well as the existing torch/torch.h import in this file

#include <torch/torch.h>
#include "core/conversion/converters/converter_util.h"
#include "core/conversion/converters/converters.h"
Expand Down Expand Up @@ -804,6 +805,94 @@ auto element_wise_registrations TORCHTRT_UNUSED =

LOG_DEBUG("Output tensor shape: " << out->getDimensions());
return true;
}})
.pattern(
{"aten::atan2(Tensor self, Tensor other) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
// Element-wise divide input Tensors, apply atan unary, apply quadrant correction
auto self = args[0].ITensorOrFreeze(ctx);
auto other = args[1].ITensorOrFreeze(ctx);

// atan(self / other)
auto intermediate_div = add_elementwise(
ctx, nvinfer1::ElementWiseOperation::kDIV, self, other, util::node_info(n) + "_intermediate_div");
auto atan2_intermediate =
ctx->net->addUnary(*intermediate_div->getOutput(0), nvinfer1::UnaryOperation::kATAN);

// Constant tensors used for quadrant correction
auto ZERO = tensor_to_const(ctx, torch::tensor({0.}));
auto ONE = tensor_to_const(ctx, torch::tensor({1.}));
auto TWO = tensor_to_const(ctx, torch::tensor({2.}));
// Using PI float for TRT compatibility, however double is preferred for PyTorch
auto PI = tensor_to_const(ctx, torch::tensor({c10::pi<float>}));

// Quadrant correction is only needed when (other < 0) (elementwise)
// In this scenario, the correction is +/- pi, depending on the sign of self (elementwise)

// Full atan2 Formula is given by:
// atan2(self, other) = atan(self / other) - (other < 0) * (2 * (self < 0) - 1) * pi

// Mask of (other < 0)
auto other_mask = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kLESS,
other,
ZERO,
util::node_info(n) + "_less_than_zero_other_mask");

// Mask of (self < 0)
auto self_mask = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kLESS,
self,
ZERO,
util::node_info(n) + "_greater_than_zero_self_mask");

// Apply 2 * x - 1 to translate mask from {0, 1} to {-1, 1}
self_mask = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kPROD,
self_mask->getOutput(0),
TWO,
util::node_info(n) + "_greater_than_zero_times_two_self_mask");
self_mask = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kSUB,
self_mask->getOutput(0),
ONE,
util::node_info(n) + "_greater_than_zero_normalized_self_mask");

// Multiply mask by pi
self_mask = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kPROD,
self_mask->getOutput(0),
PI,
util::node_info(n) + "_greater_than_zero_times_pi_self_mask");

// Take product of masks to generate correction term
auto correction_term = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kPROD,
other_mask->getOutput(0),
self_mask->getOutput(0),
util::node_info(n) + "_correction_term");

// Add correction term to atan(self/other) to obtain atan2(self, other)
auto atan2 = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kSUB,
atan2_intermediate->getOutput(0),
correction_term->getOutput(0),
util::node_info(n) + "_corrected_atan2");

TORCHTRT_CHECK(atan2, "Unable to create atan2 layer from node: " << *n);

atan2->setName(util::node_info(n).c_str());
auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], atan2->getOutput(0));

LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
return true;
}});

} // namespace
Expand Down
69 changes: 69 additions & 0 deletions tests/core/conversion/converters/test_element_wise.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -538,3 +538,72 @@ TEST(Converters, ATenRemainderWithScalarConvertsCorrectly) {

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAtan2ConvertsCorrectly) {
const auto graph = R"IR(
graph(%x.0 : Tensor, %x.1 : Tensor):
%2 : Tensor = aten::atan2(%x.0, %x.1)
return (%2))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// Resize range to [-1, 1] to span multiple quadrants
auto in_0 = -2 * at::rand({2, 3, 5, 5}, {at::kCUDA}) + 1;
auto in_1 = -2 * at::rand({2, 3, 5, 5}, {at::kCUDA}) + 1;

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in_0, in_1});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in_0, in_1});

ASSERT_TRUE(
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}

TEST(Converters, ATenAtan2ManagesPosInfCorrectly) {
const auto graph = R"IR(
graph(%x.0 : Tensor, %x.1 : Tensor):
%2 : Tensor = aten::atan2(%x.0, %x.1)
return (%2))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// Expecting PI/2
auto in_0 = at::ones({4, 1, 7, 8}, {at::kCUDA});
auto in_1 = at::zeros({4, 1, 7, 8}, {at::kCUDA});

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in_0, in_1});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in_0, in_1});

ASSERT_TRUE(
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}

TEST(Converters, ATenAtan2ManagesNegInfCorrectly) {
const auto graph = R"IR(
graph(%x.0 : Tensor, %x.1 : Tensor):
%2 : Tensor = aten::atan2(%x.0, %x.1)
return (%2))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// Expecting -PI/2
auto in_0 = -1 * at::ones({4, 1, 7, 8}, {at::kCUDA});
auto in_1 = at::zeros({4, 1, 7, 8}, {at::kCUDA});

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in_0, in_1});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in_0, in_1});

ASSERT_TRUE(
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}