Skip to content

feat: support cumsum dynamo converter #2403

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -691,6 +691,29 @@ def aten_ops_chunk(
)


@dynamo_tensorrt_converter(torch.ops.aten.cumsum.default) # type: ignore[misc]
@enforce_tensor_types(
{
0: (TRTTensor,),
}
) # type: ignore[misc]
def aten_ops_cumsum(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.slice.cumsum(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
args[1],
)


@dynamo_tensorrt_converter(torch.ops.aten.permute.default) # type: ignore[misc]
@enforce_tensor_types(
{
Expand Down
48 changes: 47 additions & 1 deletion py/torch_tensorrt/dynamo/conversion/impl/slice/ops.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,16 @@
import math
from typing import Optional

import numpy as np
import tensorrt as trt
from torch.fx.node import Target
from torch_tensorrt.dynamo._SourceIR import SourceIR
from torch_tensorrt.dynamo.conversion import impl
from torch_tensorrt.dynamo.conversion._ConversionContext import ConversionContext
from torch_tensorrt.dynamo.conversion.converter_utils import get_positive_dim
from torch_tensorrt.dynamo.conversion.converter_utils import (
get_positive_dim,
get_trt_tensor,
)
from torch_tensorrt.dynamo.conversion.impl.slice.base import slice
from torch_tensorrt.fx.converters.converter_utils import (
has_dynamic_shape,
Expand Down Expand Up @@ -157,3 +163,43 @@ def chunk(
cnt += 1

return result


def cumsum(
ctx: ConversionContext,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input: TRTTensor,
dim: int,
) -> TRTTensor:
input_shape = input.shape
dim = get_positive_dim(dim, len(input_shape))
loop = ctx.net.add_loop()
axis = np.array(input_shape[dim])
trip_limit = get_trt_tensor(ctx, axis, f"{name}_trip_limit")
loop.add_trip_limit(trip_limit, trt.TripLimit.COUNT)
iterator = loop.add_iterator(input, dim, reverse=False)
data = iterator.get_output(0)
new_dims = tuple(data.shape)
zeros = np.zeros(new_dims)
zero_trttensor = get_trt_tensor(ctx, zeros, f"{name}_initial_value")

running_sum = loop.add_recurrence(zero_trttensor)
set_layer_name(running_sum, target, f"{name}_running_sum", source_ir)
running_sum_tensor = running_sum.get_output(0)

current_sum = impl.elementwise.add(
ctx,
target,
source_ir,
f"{name}_elementwise_add",
data,
running_sum_tensor,
)
running_sum.set_input(1, current_sum)

loop_output = loop.add_loop_output(current_sum, trt.LoopOutput.CONCATENATE, dim)
set_layer_name(loop_output, target, f"{name}_loop_output", source_ir)
loop_output.set_input(1, trip_limit)
return loop_output.get_output(0)
69 changes: 69 additions & 0 deletions tests/py/dynamo/conversion/test_cumsum_aten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
import torch
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests

from .harness import DispatchTestCase


class TestCumsumConverter(DispatchTestCase):
@parameterized.expand(
[
((1,), 0),
((2,), 0),
((3,), -1),
]
)
def test_cumsum_1D(self, shape, dim):
class Cumsum(nn.Module):
def forward(self, x):
return torch.ops.aten.cumsum.default(x, dim)

inputs = [torch.randn(shape)]
self.run_test(
Cumsum(),
inputs,
)

@parameterized.expand(
[
((3, 1), 0),
((3, 1), 1),
((2, 3), -1),
((2, 3), -2),
]
)
def test_cumsum_2D(self, shape, dims):
class Cumsum(nn.Module):
def forward(self, x):
return torch.ops.aten.cumsum.default(x, dims)

inputs = [torch.randn(shape)]
self.run_test(
Cumsum(),
inputs,
)

@parameterized.expand(
[
((4, 2, 3), 0),
((4, 2, 3), 1),
((1, 2, 3), 2),
((1, 2, 3), -1),
((1, 2, 3), -2),
]
)
def test_cumsum_3D(self, shape, dims):
class Cumsum(nn.Module):
def forward(self, x):
return torch.ops.aten.cumsum.default(x, dims)

inputs = [torch.randn(shape)]
self.run_test(
Cumsum(),
inputs,
)


if __name__ == "__main__":
run_tests()