Skip to content

fix: index_put converter to handle multi-shape slicing with None #3465

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 73 additions & 44 deletions py/torch_tensorrt/dynamo/conversion/impl/select.py
Original file line number Diff line number Diff line change
@@ -501,7 +501,6 @@ def index_put_converter(
F = [i for i in range(rank) if indices[i] is None] # Free dimensions
I = [i for i in range(rank) if indices[i] is not None] # Indexed dimensions
K = len(I)

# Determine the maximum size 'N' among the index tensors
if K > 0:
index_shapes = [tensor.shape[0] for tensor in indices if tensor is not None]
@@ -684,16 +683,6 @@ def index_put_converter(
values_reshaped = impl.shuffle.reshape(
ctx, target, source_ir, f"{name}_reshape_scalar", values, (1,)
)
num_dims = len(expected_shape)
ones_shape = tuple([1] * num_dims)
values_reshaped = impl.shuffle.reshape(
ctx,
target,
source_ir,
f"{name}_reshape_to_ones",
values_reshaped,
ones_shape,
)
values_expanded = impl.slice.expand(
ctx,
target,
@@ -704,40 +693,79 @@ def index_put_converter(
)
else: # Non-scalar case
values_shape = list(values.shape)

# Pad dimensions if necessary
if len(values_shape) < len(expected_shape):
values_shape = [1] * (
len(expected_shape) - len(values_shape)
) + values_shape

# Calculate a broadcastable shape
broadcast_shape = []
for exp_dim, val_dim in zip(expected_shape, values_shape):
if val_dim == 1:
broadcast_shape.append(exp_dim)
elif val_dim == exp_dim:
broadcast_shape.append(val_dim)
if K > 0 and N in values_shape:
n_idx = values_shape.index(N)
permute_order = [n_idx] + [
i for i in range(len(values_shape)) if i != n_idx
]
values_permuted = impl.permutation.permute(
ctx, target, source_ir, f"{name}_permute_values", values, permute_order
)
remaining_shape = [
values_shape[i] for i in range(len(values_shape)) if i != n_idx
]
target_f_dims = len(F)
current_f_dims = len(remaining_shape)
if current_f_dims < target_f_dims:
values_expanded_shape = (
[N] + [1] * (target_f_dims - current_f_dims) + remaining_shape
)
else:
raise ValueError(f"Cannot broadcast {values_shape} to {expected_shape}")

# Reshape and then expand
values_reshaped = impl.shuffle.reshape(
ctx,
target,
source_ir,
f"{name}_reshape_values",
values,
tuple(broadcast_shape),
)
values_expanded = impl.slice.expand(
ctx,
target,
source_ir,
f"{name}_expand_values",
values_reshaped,
expected_shape,
)
values_expanded_shape = [N] + remaining_shape[:target_f_dims]
values_expanded = impl.shuffle.reshape(
ctx,
target,
source_ir,
f"{name}_unsqueeze_values",
values_permuted,
tuple(values_expanded_shape),
)
broadcast_shape = []
for exp_dim, val_dim in zip(expected_shape, values_expanded_shape):
if val_dim == 1:
broadcast_shape.append(exp_dim)
elif val_dim == exp_dim:
broadcast_shape.append(val_dim)
else:
raise ValueError(
f"Cannot broadcast {values_expanded_shape} to {expected_shape}"
)
values_expanded = impl.slice.expand(
ctx,
target,
source_ir,
f"{name}_expand_values",
values_expanded,
tuple(broadcast_shape),
)
else:
values_shape_padded = [1] * (
len(expected_shape) - len(values.shape)
) + list(values.shape)
broadcast_shape = []
for exp_dim, val_dim in zip(expected_shape, values_shape_padded):
if val_dim == 1 or exp_dim == val_dim:
broadcast_shape.append(exp_dim)
else:
raise ValueError(
f"Cannot broadcast {values.shape} to {expected_shape}"
)
values_reshaped = impl.shuffle.reshape(
ctx,
target,
source_ir,
f"{name}_reshape_values",
values,
tuple(broadcast_shape),
)
values_expanded = impl.slice.expand(
ctx,
target,
source_ir,
f"{name}_expand_values",
values_reshaped,
expected_shape,
)

# Flatten values to (N * F_volume,)
flattened_values = impl.shuffle.reshape(
@@ -749,6 +777,7 @@ def index_put_converter(
(N * F_volume,),
)

indices_cat = cast_trt_tensor(ctx, indices_cat, trt.int32, f"{name}_idx_int32")
# Perform Scatter ND operation
scatter_layer = ctx.net.add_scatter(
input_tensor,
6 changes: 6 additions & 0 deletions tests/py/dynamo/conversion/test_index_put_aten.py
Original file line number Diff line number Diff line change
@@ -194,6 +194,12 @@ class TestIndexPutConverter(DispatchTestCase):
dtype=torch.int32,
),
),
param(
test_name="4d_indices_none_none_multiple_idx_broadcast_error",
source_tensor=torch.zeros([1, 2, 5, 3], dtype=torch.float32),
indices_tensor=(None, None, torch.tensor([0, 1, 2], dtype=torch.int64)),
value_tensor=torch.randn([2, 3, 3], dtype=torch.float32),
),
# param(
# test_name="2d_indices_accumulate_True",
# source_tensor=torch.zeros([5, 5], dtype=torch.int32),