|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | + #include <executorch/extension/data_loader/file_data_loader.h> |
| 10 | + #include <executorch/extension/flat_tensor/flat_tensor_data_map.h> |
| 11 | + #include <executorch/runtime/core/error.h> |
| 12 | + #include <executorch/runtime/core/result.h> |
| 13 | + #include <executorch/runtime/executor/method.h> |
| 14 | + #include <executorch/runtime/executor/program.h> |
| 15 | + #include <executorch/runtime/executor/test/managed_memory_manager.h> |
| 16 | + #include <executorch/runtime/platform/runtime.h> |
| 17 | + |
| 18 | + #include <gtest/gtest.h> |
| 19 | + |
| 20 | + using namespace ::testing; |
| 21 | + using executorch::extension::FlatTensorDataMap; |
| 22 | + using executorch::runtime::DataLoader; |
| 23 | + using executorch::runtime::Error; |
| 24 | + using executorch::runtime::FreeableBuffer; |
| 25 | + using executorch::runtime::Method; |
| 26 | + using executorch::runtime::Program; |
| 27 | + using executorch::runtime::Result; |
| 28 | + using executorch::runtime::testing::ManagedMemoryManager; |
| 29 | + using torch::executor::util::FileDataLoader; |
| 30 | + |
| 31 | + constexpr size_t kDefaultNonConstMemBytes = 32 * 1024U; |
| 32 | + constexpr size_t kDefaultRuntimeMemBytes = 32 * 1024U; |
| 33 | + |
| 34 | + class DataSeparationTest : public ::testing::Test { |
| 35 | + protected: |
| 36 | + void SetUp() override { |
| 37 | + // Since these tests cause ET_LOG to be called, the PAL must be initialized |
| 38 | + // first. |
| 39 | + executorch::runtime::runtime_init(); |
| 40 | + |
| 41 | + // Create data loaders. |
| 42 | + Result<FileDataLoader> linear_program_loader = |
| 43 | + FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_PROGRAM_PATH")); |
| 44 | + ASSERT_EQ(linear_program_loader.error(), Error::Ok); |
| 45 | + linear_program_loader_ = std::make_unique<FileDataLoader>( |
| 46 | + std::move(linear_program_loader.get())); |
| 47 | + |
| 48 | + Result<FileDataLoader> linear_data_loader = |
| 49 | + FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_DATA_PATH")); |
| 50 | + ASSERT_EQ(linear_data_loader.error(), Error::Ok); |
| 51 | + linear_data_loader_ = |
| 52 | + std::make_unique<FileDataLoader>(std::move(linear_data_loader.get())); |
| 53 | + |
| 54 | + // Create programs. |
| 55 | + Result<Program> linear_program = Program::load( |
| 56 | + linear_program_loader_.get(), |
| 57 | + Program::Verification::InternalConsistency); |
| 58 | + ASSERT_EQ(linear_program.error(), Error::Ok); |
| 59 | + linear_program_ = |
| 60 | + std::make_unique<Program>(std::move(linear_program.get())); |
| 61 | + |
| 62 | + Result<FlatTensorDataMap> linear_data_map = |
| 63 | + FlatTensorDataMap::load(linear_data_loader_.get()); |
| 64 | + EXPECT_EQ(linear_data_map.error(), Error::Ok); |
| 65 | + linear_data_map_ = |
| 66 | + std::make_unique<FlatTensorDataMap>(std::move(linear_data_map.get())); |
| 67 | + } |
| 68 | + |
| 69 | + private: |
| 70 | + std::unique_ptr<FileDataLoader> linear_program_loader_; |
| 71 | + std::unique_ptr<FileDataLoader> linear_data_loader_; |
| 72 | + |
| 73 | + protected: |
| 74 | + std::unique_ptr<Program> linear_program_; |
| 75 | + std::unique_ptr<FlatTensorDataMap> linear_data_map_; |
| 76 | + }; |
| 77 | + |
| 78 | + TEST_F(DataSeparationTest, TestExternalData) { |
| 79 | + FlatTensorDataMap* data_map = linear_data_map_.get(); |
| 80 | + EXPECT_EQ(data_map->get_num_keys().get(), 2); |
| 81 | + |
| 82 | + Result<const char*> key0 = data_map->get_key(0); |
| 83 | + EXPECT_EQ(key0.error(), Error::Ok); |
| 84 | + Result<const char*> key1 = data_map->get_key(1); |
| 85 | + EXPECT_EQ(key1.error(), Error::Ok); |
| 86 | + |
| 87 | + // Check that accessing keys out of bounds fails. |
| 88 | + EXPECT_EQ(data_map->get_key(2).error(), Error::InvalidArgument); |
| 89 | + |
| 90 | + // Linear.weight |
| 91 | + Result<FreeableBuffer> data0 = data_map->get_data(key0.get()); |
| 92 | + EXPECT_EQ(data0.error(), Error::Ok); |
| 93 | + EXPECT_EQ(data0.get().size(), 36); // 3*3*4 (3*3 matrix, 4 bytes per float) |
| 94 | + |
| 95 | + // Linear.bias |
| 96 | + Result<FreeableBuffer> data1 = data_map->get_data(key1.get()); |
| 97 | + EXPECT_EQ(data1.error(), Error::Ok); |
| 98 | + EXPECT_EQ(data1.get().size(), 12); // 3*4 (3 vector, 4 bytes per float) |
| 99 | + |
| 100 | + // Check that accessing non-existent data fails. |
| 101 | + Result<FreeableBuffer> data2 = data_map->get_data("nonexistent"); |
| 102 | + EXPECT_EQ(data2.error(), Error::NotFound); |
| 103 | +} |
| 104 | + |
| 105 | + TEST_F(DataSeparationTest, TestE2E) { |
| 106 | + ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes); |
| 107 | + Result<Method> method = linear_program_->load_method( |
| 108 | + "forward", &mmm.get(), nullptr, linear_data_map_.get()); |
| 109 | + ASSERT_EQ(method.error(), Error::Ok); |
| 110 | + |
| 111 | + // Can execute the method. |
| 112 | + Error err = method->execute(); |
| 113 | + ASSERT_EQ(err, Error::Ok); |
| 114 | + } |
0 commit comments