Skip to content

Fix deprecated call #67

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions cuda/lltm_cuda.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,8 @@ std::vector<torch::Tensor> lltm_cuda_backward(
// C++ interface

// NOTE: AT_ASSERT has become AT_CHECK on master after 0.4.
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

std::vector<torch::Tensor> lltm_forward(
Expand Down
70 changes: 35 additions & 35 deletions cuda/lltm_cuda_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ __device__ __forceinline__ scalar_t d_tanh(scalar_t z) {

template <typename scalar_t>
__device__ __forceinline__ scalar_t elu(scalar_t z, scalar_t alpha = 1.0) {
return fmaxf(0.0, z) + fminf(0.0, alpha * (exp(z) - 1.0));
return fmax((scalar_t) 0.0, z) + fmin((scalar_t) 0.0, alpha * (exp(z) - 1.0));
}

template <typename scalar_t>
Expand All @@ -37,13 +37,13 @@ __device__ __forceinline__ scalar_t d_elu(scalar_t z, scalar_t alpha = 1.0) {

template <typename scalar_t>
__global__ void lltm_cuda_forward_kernel(
const torch::PackedTensorAccessor<scalar_t,3,torch::RestrictPtrTraits,size_t> gates,
const torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> old_cell,
torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> new_h,
torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> new_cell,
torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> input_gate,
torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> output_gate,
torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> candidate_cell) {
const torch::PackedTensorAccessor32<scalar_t,3,torch::RestrictPtrTraits> gates,
const torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> old_cell,
torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> new_h,
torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> new_cell,
torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> input_gate,
torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> output_gate,
torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> candidate_cell) {
//batch index
const int n = blockIdx.y;
// column index
Expand All @@ -60,15 +60,15 @@ __global__ void lltm_cuda_forward_kernel(

template <typename scalar_t>
__global__ void lltm_cuda_backward_kernel(
torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> d_old_cell,
torch::PackedTensorAccessor<scalar_t,3,torch::RestrictPtrTraits,size_t> d_gates,
const torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> grad_h,
const torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> grad_cell,
const torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> new_cell,
const torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> input_gate,
const torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> output_gate,
const torch::PackedTensorAccessor<scalar_t,2,torch::RestrictPtrTraits,size_t> candidate_cell,
const torch::PackedTensorAccessor<scalar_t,3,torch::RestrictPtrTraits,size_t> gate_weights) {
torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> d_old_cell,
torch::PackedTensorAccessor32<scalar_t,3,torch::RestrictPtrTraits> d_gates,
const torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> grad_h,
const torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> grad_cell,
const torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> new_cell,
const torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> input_gate,
const torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> output_gate,
const torch::PackedTensorAccessor32<scalar_t,2,torch::RestrictPtrTraits> candidate_cell,
const torch::PackedTensorAccessor32<scalar_t,3,torch::RestrictPtrTraits> gate_weights) {
//batch index
const int n = blockIdx.y;
// column index
Expand Down Expand Up @@ -116,15 +116,15 @@ std::vector<torch::Tensor> lltm_cuda_forward(
const int threads = 1024;
const dim3 blocks((state_size + threads - 1) / threads, batch_size);

AT_DISPATCH_FLOATING_TYPES(gates.type(), "lltm_forward_cuda", ([&] {
AT_DISPATCH_FLOATING_TYPES(gates.scalar_type(), "lltm_forward_cuda", ([&] {
lltm_cuda_forward_kernel<scalar_t><<<blocks, threads>>>(
gates.packed_accessor<scalar_t,3,torch::RestrictPtrTraits,size_t>(),
old_cell.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
new_h.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
new_cell.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
input_gate.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
output_gate.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
candidate_cell.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>());
gates.packed_accessor32<scalar_t,3,torch::RestrictPtrTraits>(),
old_cell.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
new_h.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
new_cell.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
input_gate.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
output_gate.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
candidate_cell.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>());
}));

return {new_h, new_cell, input_gate, output_gate, candidate_cell, X, gates};
Expand All @@ -149,17 +149,17 @@ std::vector<torch::Tensor> lltm_cuda_backward(
const int threads = 1024;
const dim3 blocks((state_size + threads - 1) / threads, batch_size);

AT_DISPATCH_FLOATING_TYPES(X.type(), "lltm_forward_cuda", ([&] {
AT_DISPATCH_FLOATING_TYPES(X.scalar_type(), "lltm_forward_cuda", ([&] {
lltm_cuda_backward_kernel<scalar_t><<<blocks, threads>>>(
d_old_cell.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
d_gates.packed_accessor<scalar_t,3,torch::RestrictPtrTraits,size_t>(),
grad_h.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
grad_cell.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
new_cell.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
input_gate.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
output_gate.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
candidate_cell.packed_accessor<scalar_t,2,torch::RestrictPtrTraits,size_t>(),
gates.packed_accessor<scalar_t,3,torch::RestrictPtrTraits,size_t>());
d_old_cell.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
d_gates.packed_accessor32<scalar_t,3,torch::RestrictPtrTraits>(),
grad_h.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
grad_cell.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
new_cell.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
input_gate.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
output_gate.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
candidate_cell.packed_accessor32<scalar_t,2,torch::RestrictPtrTraits>(),
gates.packed_accessor32<scalar_t,3,torch::RestrictPtrTraits>());
}));

auto d_gate_weights = d_gates.flatten(1, 2);
Expand Down