10
10
from prototype_common_utils import (
11
11
make_bounding_box ,
12
12
make_bounding_boxes ,
13
- make_detection_and_segmentation_masks ,
14
13
make_detection_mask ,
15
14
make_image ,
16
15
make_images ,
17
16
make_label ,
17
+ make_masks ,
18
18
make_one_hot_labels ,
19
19
make_segmentation_mask ,
20
20
)
@@ -64,7 +64,7 @@ def parametrize_from_transforms(*transforms):
64
64
make_one_hot_labels ,
65
65
make_vanilla_tensor_images ,
66
66
make_pil_images ,
67
- make_detection_and_segmentation_masks ,
67
+ make_masks ,
68
68
]:
69
69
inputs = list (creation_fn ())
70
70
try :
@@ -132,7 +132,7 @@ def test_mixup_cutmix(self, transform, input):
132
132
transform (input_copy )
133
133
134
134
# Check if we raise an error if sample contains bbox or mask or label
135
- err_msg = "does not support bounding boxes, segmentation masks and plain labels"
135
+ err_msg = "does not support bounding boxes, masks and plain labels"
136
136
input_copy = dict (input )
137
137
for unsup_data in [
138
138
make_label (),
@@ -241,7 +241,7 @@ def test_convert_color_space_unsupported_types(self):
241
241
color_space = features .ColorSpace .RGB , old_color_space = features .ColorSpace .GRAY
242
242
)
243
243
244
- for inpt in [make_bounding_box (format = "XYXY" ), make_detection_and_segmentation_masks ()]:
244
+ for inpt in [make_bounding_box (format = "XYXY" ), make_masks ()]:
245
245
output = transform (inpt )
246
246
assert output is inpt
247
247
@@ -278,13 +278,13 @@ def test_features_image(self, p):
278
278
279
279
assert_equal (features .Image (expected ), actual )
280
280
281
- def test_features_segmentation_mask (self , p ):
281
+ def test_features_mask (self , p ):
282
282
input , expected = self .input_expected_image_tensor (p )
283
283
transform = transforms .RandomHorizontalFlip (p = p )
284
284
285
- actual = transform (features .SegmentationMask (input ))
285
+ actual = transform (features .Mask (input ))
286
286
287
- assert_equal (features .SegmentationMask (expected ), actual )
287
+ assert_equal (features .Mask (expected ), actual )
288
288
289
289
def test_features_bounding_box (self , p ):
290
290
input = features .BoundingBox ([0 , 0 , 5 , 5 ], format = features .BoundingBoxFormat .XYXY , image_size = (10 , 10 ))
@@ -331,13 +331,13 @@ def test_features_image(self, p):
331
331
332
332
assert_equal (features .Image (expected ), actual )
333
333
334
- def test_features_segmentation_mask (self , p ):
334
+ def test_features_mask (self , p ):
335
335
input , expected = self .input_expected_image_tensor (p )
336
336
transform = transforms .RandomVerticalFlip (p = p )
337
337
338
- actual = transform (features .SegmentationMask (input ))
338
+ actual = transform (features .Mask (input ))
339
339
340
- assert_equal (features .SegmentationMask (expected ), actual )
340
+ assert_equal (features .Mask (expected ), actual )
341
341
342
342
def test_features_bounding_box (self , p ):
343
343
input = features .BoundingBox ([0 , 0 , 5 , 5 ], format = features .BoundingBoxFormat .XYXY , image_size = (10 , 10 ))
@@ -1253,7 +1253,7 @@ def test__transform(self, mocker):
1253
1253
torch .testing .assert_close (output_ohe_label , ohe_label [is_within_crop_area ])
1254
1254
1255
1255
output_masks = output [4 ]
1256
- assert isinstance (output_masks , features .SegmentationMask )
1256
+ assert isinstance (output_masks , features .Mask )
1257
1257
assert len (output_masks ) == expected_within_targets
1258
1258
1259
1259
@@ -1372,10 +1372,10 @@ def test__extract_image_targets_assertion(self, mocker):
1372
1372
# labels, bboxes, masks
1373
1373
mocker .MagicMock (spec = features .Label ),
1374
1374
mocker .MagicMock (spec = features .BoundingBox ),
1375
- mocker .MagicMock (spec = features .SegmentationMask ),
1375
+ mocker .MagicMock (spec = features .Mask ),
1376
1376
# labels, bboxes, masks
1377
1377
mocker .MagicMock (spec = features .BoundingBox ),
1378
- mocker .MagicMock (spec = features .SegmentationMask ),
1378
+ mocker .MagicMock (spec = features .Mask ),
1379
1379
]
1380
1380
1381
1381
with pytest .raises (TypeError , match = "requires input sample to contain equal sized list of Images" ):
@@ -1393,11 +1393,11 @@ def test__extract_image_targets(self, image_type, label_type, mocker):
1393
1393
# labels, bboxes, masks
1394
1394
mocker .MagicMock (spec = label_type ),
1395
1395
mocker .MagicMock (spec = features .BoundingBox ),
1396
- mocker .MagicMock (spec = features .SegmentationMask ),
1396
+ mocker .MagicMock (spec = features .Mask ),
1397
1397
# labels, bboxes, masks
1398
1398
mocker .MagicMock (spec = label_type ),
1399
1399
mocker .MagicMock (spec = features .BoundingBox ),
1400
- mocker .MagicMock (spec = features .SegmentationMask ),
1400
+ mocker .MagicMock (spec = features .Mask ),
1401
1401
]
1402
1402
1403
1403
images , targets = transform ._extract_image_targets (flat_sample )
@@ -1413,7 +1413,7 @@ def test__extract_image_targets(self, image_type, label_type, mocker):
1413
1413
for target in targets :
1414
1414
for key , type_ in [
1415
1415
("boxes" , features .BoundingBox ),
1416
- ("masks" , features .SegmentationMask ),
1416
+ ("masks" , features .Mask ),
1417
1417
("labels" , label_type ),
1418
1418
]:
1419
1419
assert key in target
@@ -1436,7 +1436,7 @@ def test__copy_paste(self, label_type):
1436
1436
"boxes" : features .BoundingBox (
1437
1437
torch .tensor ([[2.0 , 3.0 , 8.0 , 9.0 ], [20.0 , 20.0 , 30.0 , 30.0 ]]), format = "XYXY" , image_size = (32 , 32 )
1438
1438
),
1439
- "masks" : features .SegmentationMask (masks ),
1439
+ "masks" : features .Mask (masks ),
1440
1440
"labels" : label_type (labels ),
1441
1441
}
1442
1442
@@ -1451,7 +1451,7 @@ def test__copy_paste(self, label_type):
1451
1451
"boxes" : features .BoundingBox (
1452
1452
torch .tensor ([[12.0 , 13.0 , 19.0 , 18.0 ], [1.0 , 15.0 , 8.0 , 19.0 ]]), format = "XYXY" , image_size = (32 , 32 )
1453
1453
),
1454
- "masks" : features .SegmentationMask (paste_masks ),
1454
+ "masks" : features .Mask (paste_masks ),
1455
1455
"labels" : label_type (paste_labels ),
1456
1456
}
1457
1457
@@ -1586,7 +1586,7 @@ def test__transform_culling(self, mocker):
1586
1586
bounding_boxes = make_bounding_box (
1587
1587
format = features .BoundingBoxFormat .XYXY , image_size = image_size , extra_dims = (batch_size ,)
1588
1588
)
1589
- segmentation_masks = make_detection_mask (size = image_size , extra_dims = (batch_size ,))
1589
+ masks = make_detection_mask (size = image_size , extra_dims = (batch_size ,))
1590
1590
labels = make_label (size = (batch_size ,))
1591
1591
1592
1592
transform = transforms .FixedSizeCrop ((- 1 , - 1 ))
@@ -1596,13 +1596,13 @@ def test__transform_culling(self, mocker):
1596
1596
output = transform (
1597
1597
dict (
1598
1598
bounding_boxes = bounding_boxes ,
1599
- segmentation_masks = segmentation_masks ,
1599
+ masks = masks ,
1600
1600
labels = labels ,
1601
1601
)
1602
1602
)
1603
1603
1604
1604
assert_equal (output ["bounding_boxes" ], bounding_boxes [is_valid ])
1605
- assert_equal (output ["segmentation_masks " ], segmentation_masks [is_valid ])
1605
+ assert_equal (output ["masks " ], masks [is_valid ])
1606
1606
assert_equal (output ["labels" ], labels [is_valid ])
1607
1607
1608
1608
def test__transform_bounding_box_clamping (self , mocker ):
0 commit comments