Skip to content

Vectorize box decoding in FCOS #6203

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Jul 5, 2022
36 changes: 36 additions & 0 deletions torchvision/models/detection/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -300,6 +300,42 @@ def decode_single(self, rel_codes: Tensor, boxes: Tensor) -> Tensor:
pred_boxes = torch.stack((pred_boxes1, pred_boxes2, pred_boxes3, pred_boxes4), dim=1)
return pred_boxes

def decode_all(self, rel_codes: Tensor, boxes: List[Tensor]) -> Tensor:
"""
Vectorized version of `decode_single` method.

Args:
rel_codes (Tensor): encoded boxes
boxes (List[Tensor]): List of reference boxes.

Returns:
Tensor: the predicted boxes with the encoded relative box offsets.

.. note::
This method assumes that ``rel_codes`` and ``boxes`` have same size for 0th dimension. i.e. ``len(rel_codes) == len(boxes)``.

"""

boxes = torch.stack(boxes).to(dtype=rel_codes.dtype)

ctr_x = 0.5 * (boxes[..., 0] + boxes[..., 2])
ctr_y = 0.5 * (boxes[..., 1] + boxes[..., 3])

if self.normalize_by_size:
boxes_w = boxes[..., 2] - boxes[..., 0]
boxes_h = boxes[..., 3] - boxes[..., 1]

list_box_size = torch.stack((boxes_w, boxes_h, boxes_w, boxes_h), dim=-1)
rel_codes = rel_codes * list_box_size

pred_boxes1 = ctr_x - rel_codes[..., 0]
pred_boxes2 = ctr_y - rel_codes[..., 1]
pred_boxes3 = ctr_x + rel_codes[..., 2]
pred_boxes4 = ctr_y + rel_codes[..., 3]

pred_boxes = torch.stack((pred_boxes1, pred_boxes2, pred_boxes3, pred_boxes4), dim=-1)
return pred_boxes


class Matcher:
"""
Expand Down
10 changes: 4 additions & 6 deletions torchvision/models/detection/fcos.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,14 +87,12 @@ def compute_loss(
loss_cls = sigmoid_focal_loss(cls_logits, gt_classes_targets, reduction="sum")

# regression loss: GIoU loss
# TODO: vectorize this instead of using a for loop
pred_boxes = [
self.box_coder.decode_single(bbox_regression_per_image, anchors_per_image)
for anchors_per_image, bbox_regression_per_image in zip(anchors, bbox_regression)
]

pred_boxes = self.box_coder.decode_all(bbox_regression, anchors)

# amp issue: pred_boxes need to convert float
loss_bbox_reg = generalized_box_iou_loss(
torch.stack(pred_boxes)[foregroud_mask].float(),
pred_boxes[foregroud_mask],
torch.stack(all_gt_boxes_targets)[foregroud_mask],
reduction="sum",
)
Expand Down