Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Suppress superfluous warnings from numpy #6599

Merged
merged 2 commits into from
May 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions cirq-core/cirq/linalg/decompositions.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,8 +222,9 @@ def kron_factor_4x4_to_2x2s(matrix: np.ndarray) -> Tuple[complex, np.ndarray, np
f2[(a & 1) ^ i, (b & 1) ^ j] = matrix[a ^ i, b ^ j]

# Rescale factors to have unit determinants.
f1 /= np.sqrt(np.linalg.det(f1)) or 1
f2 /= np.sqrt(np.linalg.det(f2)) or 1
with np.errstate(divide="ignore", invalid="ignore"):
f1 /= np.sqrt(np.linalg.det(f1)) or 1
f2 /= np.sqrt(np.linalg.det(f2)) or 1

# Determine global phase.
g = matrix[a, b] / (f1[a >> 1, b >> 1] * f2[a & 1, b & 1])
Expand Down Expand Up @@ -965,7 +966,8 @@ def kak_vector(
# The algorithm in the appendix mentioned above is slightly incorrect in
# that it only works for elements of SU(4). A phase correction must be
# added to deal with U(4).
phases = np.log(-1j * np.linalg.det(unitary)).imag + np.pi / 2
with np.errstate(divide="ignore", invalid="ignore"):
phases = np.log(-1j * np.linalg.det(unitary)).imag + np.pi / 2
evals *= np.exp(-1j * phases / 2)[..., np.newaxis]

# The following steps follow the appendix exactly.
Expand Down
9 changes: 5 additions & 4 deletions cirq-core/cirq/linalg/diagonalize.py
Original file line number Diff line number Diff line change
Expand Up @@ -255,10 +255,11 @@ def bidiagonalize_unitary_with_special_orthogonals(
)

# Convert to special orthogonal w/o breaking diagonalization.
if np.linalg.det(left) < 0:
left[0, :] *= -1
if np.linalg.det(right) < 0:
right[:, 0] *= -1
with np.errstate(divide="ignore", invalid="ignore"):
if np.linalg.det(left) < 0:
left[0, :] *= -1
if np.linalg.det(right) < 0:
right[:, 0] *= -1

diag = combinators.dot(left, mat, right)

Expand Down
14 changes: 8 additions & 6 deletions cirq-core/cirq/linalg/predicates.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,9 +91,10 @@ def is_special_orthogonal(matrix: np.ndarray, *, rtol: float = 1e-5, atol: float
Returns:
Whether the matrix is special orthogonal within the given tolerance.
"""
return is_orthogonal(matrix, rtol=rtol, atol=atol) and (
matrix.shape[0] == 0 or np.allclose(np.linalg.det(matrix), 1, rtol=rtol, atol=atol)
)
with np.errstate(divide="ignore", invalid="ignore"):
return is_orthogonal(matrix, rtol=rtol, atol=atol) and (
matrix.shape[0] == 0 or np.allclose(np.linalg.det(matrix), 1, rtol=rtol, atol=atol)
)


def is_unitary(matrix: np.ndarray, *, rtol: float = 1e-5, atol: float = 1e-8) -> bool:
Expand Down Expand Up @@ -128,9 +129,10 @@ def is_special_unitary(matrix: np.ndarray, *, rtol: float = 1e-5, atol: float =
Whether the matrix is unitary with unit determinant within the given
tolerance.
"""
return is_unitary(matrix, rtol=rtol, atol=atol) and (
matrix.shape[0] == 0 or np.allclose(np.linalg.det(matrix), 1, rtol=rtol, atol=atol)
)
with np.errstate(divide="ignore", invalid="ignore"):
return is_unitary(matrix, rtol=rtol, atol=atol) and (
matrix.shape[0] == 0 or np.allclose(np.linalg.det(matrix), 1, rtol=rtol, atol=atol)
)


def is_normal(matrix: np.ndarray, *, rtol: float = 1e-5, atol: float = 1e-8) -> bool:
Expand Down
3 changes: 2 additions & 1 deletion cirq-core/cirq/linalg/transformations.py
Original file line number Diff line number Diff line change
Expand Up @@ -592,7 +592,8 @@ def to_special(u: np.ndarray) -> np.ndarray:
Returns:
the special unitary matrix
"""
return u * (np.linalg.det(u) ** (-1 / len(u)))
with np.errstate(divide="ignore", invalid="ignore"):
return u * (np.linalg.det(u) ** (-1 / len(u)))


def state_vector_kronecker_product(t1: np.ndarray, t2: np.ndarray) -> np.ndarray:
Expand Down
8 changes: 5 additions & 3 deletions cirq-core/cirq/testing/lin_alg_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,8 @@ def random_special_unitary(
The sampled special unitary.
"""
r = random_unitary(dim, random_state=random_state)
r[0, :] /= np.linalg.det(r)
with np.errstate(divide="ignore", invalid="ignore"):
r[0, :] /= np.linalg.det(r)
return r


Expand All @@ -152,8 +153,9 @@ def random_special_orthogonal(
The sampled special orthogonal matrix.
"""
m = random_orthogonal(dim, random_state=random_state)
if np.linalg.det(m) < 0:
m[0, :] *= -1
with np.errstate(divide="ignore", invalid="ignore"):
if np.linalg.det(m) < 0:
m[0, :] *= -1
return m


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,9 @@ def _decompose_abc(matrix: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarr
See [1], chapter 4.
"""
assert matrix.shape == (2, 2)
delta = np.angle(np.linalg.det(matrix)) * 0.5
with np.errstate(divide="ignore", invalid="ignore"):
# On MacOS, np.linalg.det emits superflous warnings
delta = np.angle(np.linalg.det(matrix)) * 0.5
alpha = np.angle(matrix[0, 0]) + np.angle(matrix[0, 1]) - 2 * delta
beta = np.angle(matrix[0, 0]) - np.angle(matrix[0, 1])

Expand Down