Skip to content

feat: add C ndarray API and refactor blas/ext/base/dnansumors #3001

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Oct 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
132 changes: 124 additions & 8 deletions lib/node_modules/@stdlib/blas/ext/base/dnansumors/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,25 +36,24 @@ limitations under the License.
var dnansumors = require( '@stdlib/blas/ext/base/dnansumors' );
```

#### dnansumors( N, x, stride )
#### dnansumors( N, x, strideX )

Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dnansumors( N, x, 1 );
var v = dnansumors( x.length, x, 1 );
// returns 1.0
```

The function has the following parameters:

- **N**: number of indexed elements.
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **stride**: index increment for `x`.
- **strideX**: stride length for `x`.

The `N` and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the sum of every other element in `x`,

Expand Down Expand Up @@ -82,7 +81,7 @@ var v = dnansumors( 4, x1, 2 );
// returns 5.0
```

#### dnansumors.ndarray( N, x, stride, offset )
#### dnansumors.ndarray( N, x, strideX, offsetX )

Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics.

Expand All @@ -91,15 +90,15 @@ var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );

var v = dnansumors.ndarray( 4, x, 1, 0 );
var v = dnansumors.ndarray( x.length, x, 1, 0 );
// returns 1.0
```

The function has the following additional parameters:

- **offset**: starting index for `x`.
- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in `x` starting from the second value
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element,

```javascript
var Float64Array = require( '@stdlib/array/float64' );
Expand Down Expand Up @@ -155,6 +154,123 @@ console.log( v );

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/blas/ext/base/dnansumors.h"
```

#### stdlib_strided_dnansumors( N, \*X, strideX )

Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.

```c
const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnansumors( 4, x, 1 );
// returns 7.0
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.

```c
double stdlib_strided_dnansumors( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );
```

#### stdlib_strided_dnansumors_ndarray( N, \*X, strideX, offsetX )

Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics.

```c
const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnansumors_ndarray( 4, x, 1, 0 );
// returns 7.0
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.

```c
double stdlib_strided_dnansumors_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/blas/ext/base/dnansumors.h"
#include <stdio.h>

int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 0.0/0.0, 0.0/0.0 };

// Specify the number of elements:
const int N = 5;

// Specify the stride length:
const int strideX = 2;

// Compute the sum:
double v = stdlib_strided_dnansumors( N, x, strideX );

// Print the result:
printf( "sum: %lf\n", v );
}
```

</section>

<!-- /.examples -->

</section>

<!-- /.c -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,19 @@ var dnansumors = require( './../lib/dnansumors.js' );

// FUNCTIONS //

/**
* Returns a random number.
*
* @private
* @returns {number} random number
*/
function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return uniform( -10.0, 10.0 );
}
return NaN;
}

/**
* Creates a benchmark function.
*
Expand All @@ -43,13 +56,6 @@ function createBenchmark( len ) {
var x = filledarrayBy( len, 'float64', rand );
return benchmark;

function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return uniform( -10.0, 10.0 );
}
return NaN;
}

function benchmark( b ) {
var v;
var i;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,19 @@ var opts = {

// FUNCTIONS //

/**
* Returns a random number.
*
* @private
* @returns {number} random number
*/
function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return uniform( -10.0, 10.0 );
}
return NaN;
}

/**
* Creates a benchmark function.
*
Expand All @@ -52,13 +65,6 @@ function createBenchmark( len ) {
var x = filledarrayBy( len, 'float64', rand );
return benchmark;

function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return uniform( -10.0, 10.0 );
}
return NaN;
}

function benchmark( b ) {
var v;
var i;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,19 @@ var dnansumors = require( './../lib/ndarray.js' );

// FUNCTIONS //

/**
* Returns a random number.
*
* @private
* @returns {number} random number
*/
function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return uniform( -10.0, 10.0 );
}
return NaN;
}

/**
* Creates a benchmark function.
*
Expand All @@ -43,13 +56,6 @@ function createBenchmark( len ) {
var x = filledarrayBy( len, 'float64', rand );
return benchmark;

function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return uniform( -10.0, 10.0 );
}
return NaN;
}

function benchmark( b ) {
var v;
var i;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,19 @@ var opts = {

// FUNCTIONS //

/**
* Returns a random number.
*
* @private
* @returns {number} random number
*/
function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return uniform( -10.0, 10.0 );
}
return NaN;
}

/**
* Creates a benchmark function.
*
Expand All @@ -52,13 +65,6 @@ function createBenchmark( len ) {
var x = filledarrayBy( len, 'float64', rand );
return benchmark;

function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return uniform( -10.0, 10.0 );
}
return NaN;
}

function benchmark( b ) {
var v;
var i;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ static double rand_double( void ) {
* @param len array length
* @return elapsed time in seconds
*/
static double benchmark( int iterations, int len ) {
static double benchmark1( int iterations, int len ) {
double elapsed;
double x[ len ];
double v;
Expand Down Expand Up @@ -124,6 +124,43 @@ static double benchmark( int iterations, int len ) {
return elapsed;
}

/**
* Runs a benchmark.
*
* @param iterations number of iterations
* @param len array length
* @return elapsed time in seconds
*/
static double benchmark2( int iterations, int len ) {
double elapsed;
double x[ len ];
double v;
double t;
int i;

for ( i = 0; i < len; i++ ) {
if ( rand_double() < 0.2 ) {
x[ i ] = 0.0 / 0.0; // NaN
} else {
x[ i ] = ( rand_double() * 20000.0 ) - 10000.0;
}
}
v = 0.0;
t = tic();
for ( i = 0; i < iterations; i++ ) {
v = stdlib_strided_dnansumors_ndarray( len, x, 1, 0 );
if ( v != v ) {
printf( "should not return NaN\n" );
break;
}
}
elapsed = tic() - t;
if ( v != v ) {
printf( "should not return NaN\n" );
}
return elapsed;
}

/**
* Main execution sequence.
*/
Expand All @@ -146,7 +183,18 @@ int main( void ) {
for ( j = 0; j < REPEATS; j++ ) {
count += 1;
printf( "# c::%s:len=%d\n", NAME, len );
elapsed = benchmark( iter, len );
elapsed = benchmark1( iter, len );
print_results( iter, elapsed );
printf( "ok %d benchmark finished\n", count );
}
}
for ( i = MIN; i <= MAX; i++ ) {
len = pow( 10, i );
iter = ITERATIONS / pow( 10, i-1 );
for ( j = 0; j < REPEATS; j++ ) {
count += 1;
printf( "# c::%s:ndarray:len=%d\n", NAME, len );
elapsed = benchmark2( iter, len );
print_results( iter, elapsed );
printf( "ok %d benchmark finished\n", count );
}
Expand Down
Loading
Loading