Skip to content

feat: add math/base/special/hyp2f1 #5140

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Feb 18, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 140 additions & 0 deletions lib/node_modules/@stdlib/math/base/special/hyp2f1/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# Gaussian hypergeometric function

> Evaluates the [Gaussian hypergeometric function][hypergeometric-function].

<section class="intro">

The [Gaussian hypergeometric function][hypergeometric-function] is defined for `|x| < 1` by the power series:

<!-- <equation class="equation" label="eq:hypergeometric_function" align="center" raw="{}_2F_1(a, b; c; x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{x^n}{n!} = 1 + \frac{a b}{c} x + \frac{a(a+1) b(b+1)}{c(c+1)} \frac{x^2}{2!} + \frac{a(a+1)(a+2) b(b+1)(b+2)}{c(c+1)(c+2)} \frac{x^3}{3!} + \cdots" alt="Gaussian hypergeometric function."> -->

```math
{}_2F_1(a, b; c; x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{x^n}{n!} = 1 + \frac{a b}{c} x + \frac{a(a+1) b(b+1)}{c(c+1)} \frac{x^2}{2!} + \frac{a(a+1)(a+2) b(b+1)(b+2)}{c(c+1)(c+2)} \frac{x^3}{3!} + \cdots
```

<!-- <div class="equation" align="center" data-raw-text="{}_2F_1(a, b; c; x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{x^n}{n!} = 1 + \frac{a b}{c} x + \frac{a(a+1) b(b+1)}{c(c+1)} \frac{x^2}{2!} + \frac{a(a+1)(a+2) b(b+1)(b+2)}{c(c+1)(c+2)} \frac{x^3}{3!} + \cdots" data-equation="eq:hypergeometric_function">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/hyp2f1/docs/img/equation_hypergeometric_function.svg" alt="Gaussian hypergeometric function.">
<br>
</div> -->

<!-- </equation> -->

and is undefined (or infinite) if `c` equals a non-positive integer.

Here `(q)ₙ` is the (rising) [Pochhammer symbol][pochhammer-symbol], which is defined by:

<!-- <equation class="equation" label="eq:pochhammer_symbol" align="center" raw="(q)_n = \begin{cases} 1 & n = 0 \\ q(q+1) \cdots (q+n-1) & n > 0 \end{cases}" alt="Pochhammer symbol."> -->

```math
(q)_n = \begin{cases} 1 & n = 0 \\ q(q+1) \cdots (q+n-1) & n > 0 \end{cases}
```

<!-- <div class="equation" align="center" data-raw-text="(q)_n = \begin{cases} 1 & n = 0 \\ q(q+1) \cdots (q+n-1) & n > 0 \end{cases}" data-equation="eq:pochhammer_symbol">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/hyp2f1/docs/img/equation_pochhammer_symbol.svg" alt="Pochhammer symbol.">
<br>
</div> -->

<!-- </equation> -->

For `|x| >= 1`, the function can be [analytically continued][analytic-continuation] using functional identities and transformation formulas.

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var hyp2f1 = require( '@stdlib/math/base/special/hyp2f1' );
```

#### hyp2f1( a, b, c, x )

Evaluates the [Gaussian hypergeometric function][hypergeometric-function].

```javascript
var v = hyp2f1( 1.0, 1.0, 1.0, 0.0 );
// returns 1.0

v = hyp2f1( 10.0, 7.4, -1.8, -0.99 );
// returns ~0.423

v = hyp2f1( 3.0, 4.0, 7.0, 1.0 );
// returns +Infinity

v = hyp2f1( NaN, 3.0, 2.0, 0.5 );
// returns NaN
```

</section>

<!-- /.usage -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var linspace = require( '@stdlib/array/base/linspace' );
var hyp2f1 = require( '@stdlib/math/base/special/hyp2f1' );

var a = linspace( -50.0, 50.0, 100 );
var b = linspace( -50.0, 50.0, 100 );
var c = linspace( -50.0, 50.0, 100 );
var x = linspace( -50.0, 50.0, 100 );

var i;
for ( i = 0; i < x.length; i++ ) {
console.log( 'a: %d, b: %d, c: %d, x: %d, 2F1(a,b;c;x): %d', a[ i ], b[ i ], c[ i ], x[ i ], hyp2f1( a[ i ], b[ i ], c[ i ], x[ i ] ) );
}
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[hypergeometric-function]: https://en.wikipedia.org/wiki/Hypergeometric_function

[pochhammer-symbol]: https://en.wikipedia.org/wiki/Falling_and_rising_factorials

[analytic-continuation]: https://en.wikipedia.org/wiki/Analytic_continuation

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pkg = require( './../package.json' ).name;
var hyp2f1 = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( bm ) {
var x;
var a;
var b;
var c;
var z;
var i;

a = uniform( 100, -50.0, 50.0 );
b = uniform( 100, -50.0, 50.0 );
c = uniform( 100, -50.0, 50.0 );
x = uniform( 100, -50.0, 50.0 );

bm.tic();
for ( i = 0; i < bm.iterations; i++ ) {
// eslint-disable-next-line max-len
z = hyp2f1( a[ i % x.length ], b[ i % x.length ], c[ i % x.length ], x[ i % x.length ] );
if ( isnan( z ) ) {
bm.fail( 'should not return NaN' );
}
}
bm.toc();
if ( isnan( z ) ) {
bm.fail( 'should not return NaN' );
}
bm.pass( 'benchmark finished' );
bm.end();
});
Loading