Skip to content

Commit 95601eb

Browse files
authored
Merge pull request #63 from pymc-devs/master
initial commit (pymc-devs#4563)
2 parents 39d95eb + 97b54f0 commit 95601eb

File tree

2 files changed

+82
-41
lines changed

2 files changed

+82
-41
lines changed

pymc3/distributions/continuous.py

+56-28
Original file line numberDiff line numberDiff line change
@@ -194,7 +194,8 @@ class Uniform(BoundedContinuous):
194194
195195
import matplotlib.pyplot as plt
196196
import numpy as np
197-
plt.style.use('seaborn-darkgrid')
197+
import arviz as az
198+
plt.style.use('arviz-darkgrid')
198199
x = np.linspace(-3, 3, 500)
199200
ls = [0., -2]
200201
us = [2., 1]
@@ -445,7 +446,8 @@ class Normal(Continuous):
445446
import matplotlib.pyplot as plt
446447
import numpy as np
447448
import scipy.stats as st
448-
plt.style.use('seaborn-darkgrid')
449+
import arviz as az
450+
plt.style.use('arviz-darkgrid')
449451
x = np.linspace(-5, 5, 1000)
450452
mus = [0., 0., 0., -2.]
451453
sigmas = [0.4, 1., 2., 0.4]
@@ -591,7 +593,8 @@ class TruncatedNormal(BoundedContinuous):
591593
import matplotlib.pyplot as plt
592594
import numpy as np
593595
import scipy.stats as st
594-
plt.style.use('seaborn-darkgrid')
596+
import arviz as az
597+
plt.style.use('arviz-darkgrid')
595598
x = np.linspace(-10, 10, 1000)
596599
mus = [0., 0., 0.]
597600
sigmas = [3.,5.,7.]
@@ -809,7 +812,8 @@ class HalfNormal(PositiveContinuous):
809812
import matplotlib.pyplot as plt
810813
import numpy as np
811814
import scipy.stats as st
812-
plt.style.use('seaborn-darkgrid')
815+
import arviz as az
816+
plt.style.use('arviz-darkgrid')
813817
x = np.linspace(0, 5, 200)
814818
for sigma in [0.4, 1., 2.]:
815819
pdf = st.halfnorm.pdf(x, scale=sigma)
@@ -949,7 +953,8 @@ class Wald(PositiveContinuous):
949953
import matplotlib.pyplot as plt
950954
import numpy as np
951955
import scipy.stats as st
952-
plt.style.use('seaborn-darkgrid')
956+
import arviz as az
957+
plt.style.use('arviz-darkgrid')
953958
x = np.linspace(0, 3, 500)
954959
mus = [1., 1., 1., 3.]
955960
lams = [1., .2, 3., 1.]
@@ -1169,7 +1174,8 @@ class Beta(UnitContinuous):
11691174
import matplotlib.pyplot as plt
11701175
import numpy as np
11711176
import scipy.stats as st
1172-
plt.style.use('seaborn-darkgrid')
1177+
import arviz as az
1178+
plt.style.use('arviz-darkgrid')
11731179
x = np.linspace(0, 1, 200)
11741180
alphas = [.5, 5., 1., 2., 2.]
11751181
betas = [.5, 1., 3., 2., 5.]
@@ -1347,7 +1353,8 @@ class Kumaraswamy(UnitContinuous):
13471353
13481354
import matplotlib.pyplot as plt
13491355
import numpy as np
1350-
plt.style.use('seaborn-darkgrid')
1356+
import arviz as az
1357+
plt.style.use('arviz-darkgrid')
13511358
x = np.linspace(0, 1, 200)
13521359
a_s = [.5, 5., 1., 2., 2.]
13531360
b_s = [.5, 1., 3., 2., 5.]
@@ -1453,7 +1460,8 @@ class Exponential(PositiveContinuous):
14531460
import matplotlib.pyplot as plt
14541461
import numpy as np
14551462
import scipy.stats as st
1456-
plt.style.use('seaborn-darkgrid')
1463+
import arviz as az
1464+
plt.style.use('arviz-darkgrid')
14571465
x = np.linspace(0, 3, 100)
14581466
for lam in [0.5, 1., 2.]:
14591467
pdf = st.expon.pdf(x, scale=1.0/lam)
@@ -1566,7 +1574,8 @@ class Laplace(Continuous):
15661574
import matplotlib.pyplot as plt
15671575
import numpy as np
15681576
import scipy.stats as st
1569-
plt.style.use('seaborn-darkgrid')
1577+
import arviz as az
1578+
plt.style.use('arviz-darkgrid')
15701579
x = np.linspace(-10, 10, 1000)
15711580
mus = [0., 0., 0., -5.]
15721581
bs = [1., 2., 4., 4.]
@@ -1794,7 +1803,8 @@ class Lognormal(PositiveContinuous):
17941803
import matplotlib.pyplot as plt
17951804
import numpy as np
17961805
import scipy.stats as st
1797-
plt.style.use('seaborn-darkgrid')
1806+
import arviz as az
1807+
plt.style.use('arviz-darkgrid')
17981808
x = np.linspace(0, 3, 100)
17991809
mus = [0., 0., 0.]
18001810
sigmas = [.25, .5, 1.]
@@ -1951,7 +1961,8 @@ class StudentT(Continuous):
19511961
import matplotlib.pyplot as plt
19521962
import numpy as np
19531963
import scipy.stats as st
1954-
plt.style.use('seaborn-darkgrid')
1964+
import arviz as az
1965+
plt.style.use('arviz-darkgrid')
19551966
x = np.linspace(-8, 8, 200)
19561967
mus = [0., 0., -2., -2.]
19571968
sigmas = [1., 1., 1., 2.]
@@ -2115,7 +2126,8 @@ class Pareto(Continuous):
21152126
import matplotlib.pyplot as plt
21162127
import numpy as np
21172128
import scipy.stats as st
2118-
plt.style.use('seaborn-darkgrid')
2129+
import arviz as az
2130+
plt.style.use('arviz-darkgrid')
21192131
x = np.linspace(0, 4, 1000)
21202132
alphas = [1., 2., 5., 5.]
21212133
ms = [1., 1., 1., 2.]
@@ -2257,7 +2269,8 @@ class Cauchy(Continuous):
22572269
import matplotlib.pyplot as plt
22582270
import numpy as np
22592271
import scipy.stats as st
2260-
plt.style.use('seaborn-darkgrid')
2272+
import arviz as az
2273+
plt.style.use('arviz-darkgrid')
22612274
x = np.linspace(-5, 5, 500)
22622275
alphas = [0., 0., 0., -2.]
22632276
betas = [.5, 1., 2., 1.]
@@ -2373,7 +2386,8 @@ class HalfCauchy(PositiveContinuous):
23732386
import matplotlib.pyplot as plt
23742387
import numpy as np
23752388
import scipy.stats as st
2376-
plt.style.use('seaborn-darkgrid')
2389+
import arviz as az
2390+
plt.style.use('arviz-darkgrid')
23772391
x = np.linspace(0, 5, 200)
23782392
for b in [0.5, 1.0, 2.0]:
23792393
pdf = st.cauchy.pdf(x, scale=b)
@@ -2490,7 +2504,8 @@ class Gamma(PositiveContinuous):
24902504
import matplotlib.pyplot as plt
24912505
import numpy as np
24922506
import scipy.stats as st
2493-
plt.style.use('seaborn-darkgrid')
2507+
import arviz as az
2508+
plt.style.use('arviz-darkgrid')
24942509
x = np.linspace(0, 20, 200)
24952510
alphas = [1., 2., 3., 7.5]
24962511
betas = [.5, .5, 1., 1.]
@@ -2654,7 +2669,8 @@ class InverseGamma(PositiveContinuous):
26542669
import matplotlib.pyplot as plt
26552670
import numpy as np
26562671
import scipy.stats as st
2657-
plt.style.use('seaborn-darkgrid')
2672+
import arviz as az
2673+
plt.style.use('arviz-darkgrid')
26582674
x = np.linspace(0, 3, 500)
26592675
alphas = [1., 2., 3., 3.]
26602676
betas = [1., 1., 1., .5]
@@ -2823,7 +2839,8 @@ class ChiSquared(Gamma):
28232839
import matplotlib.pyplot as plt
28242840
import numpy as np
28252841
import scipy.stats as st
2826-
plt.style.use('seaborn-darkgrid')
2842+
import arviz as az
2843+
plt.style.use('arviz-darkgrid')
28272844
x = np.linspace(0, 15, 200)
28282845
for df in [1, 2, 3, 6, 9]:
28292846
pdf = st.chi2.pdf(x, df)
@@ -2868,7 +2885,8 @@ class Weibull(PositiveContinuous):
28682885
import matplotlib.pyplot as plt
28692886
import numpy as np
28702887
import scipy.stats as st
2871-
plt.style.use('seaborn-darkgrid')
2888+
import arviz as az
2889+
plt.style.use('arviz-darkgrid')
28722890
x = np.linspace(0, 3, 200)
28732891
alphas = [.5, 1., 1.5, 5., 5.]
28742892
betas = [1., 1., 1., 1., 2]
@@ -3003,7 +3021,8 @@ class HalfStudentT(PositiveContinuous):
30033021
import matplotlib.pyplot as plt
30043022
import numpy as np
30053023
import scipy.stats as st
3006-
plt.style.use('seaborn-darkgrid')
3024+
import arviz as az
3025+
plt.style.use('arviz-darkgrid')
30073026
x = np.linspace(0, 5, 200)
30083027
sigmas = [1., 1., 2., 1.]
30093028
nus = [.5, 1., 1., 30.]
@@ -3138,7 +3157,8 @@ class ExGaussian(Continuous):
31383157
import matplotlib.pyplot as plt
31393158
import numpy as np
31403159
import scipy.stats as st
3141-
plt.style.use('seaborn-darkgrid')
3160+
import arviz as az
3161+
plt.style.use('arviz-darkgrid')
31423162
x = np.linspace(-6, 9, 200)
31433163
mus = [0., -2., 0., -3.]
31443164
sigmas = [1., 1., 3., 1.]
@@ -3319,7 +3339,8 @@ class VonMises(Continuous):
33193339
import matplotlib.pyplot as plt
33203340
import numpy as np
33213341
import scipy.stats as st
3322-
plt.style.use('seaborn-darkgrid')
3342+
import arviz as az
3343+
plt.style.use('arviz-darkgrid')
33233344
x = np.linspace(-np.pi, np.pi, 200)
33243345
mus = [0., 0., 0., -2.5]
33253346
kappas = [.01, 0.5, 4., 2.]
@@ -3419,7 +3440,8 @@ class SkewNormal(Continuous):
34193440
import matplotlib.pyplot as plt
34203441
import numpy as np
34213442
import scipy.stats as st
3422-
plt.style.use('seaborn-darkgrid')
3443+
import arviz as az
3444+
plt.style.use('arviz-darkgrid')
34233445
x = np.linspace(-4, 4, 200)
34243446
for alpha in [-6, 0, 6]:
34253447
pdf = st.skewnorm.pdf(x, alpha, loc=0, scale=1)
@@ -3554,7 +3576,8 @@ class Triangular(BoundedContinuous):
35543576
import matplotlib.pyplot as plt
35553577
import numpy as np
35563578
import scipy.stats as st
3557-
plt.style.use('seaborn-darkgrid')
3579+
import arviz as az
3580+
plt.style.use('arviz-darkgrid')
35583581
x = np.linspace(-2, 10, 500)
35593582
lowers = [0., -1, 2]
35603583
cs = [2., 0., 6.5]
@@ -3709,7 +3732,8 @@ class Gumbel(Continuous):
37093732
import matplotlib.pyplot as plt
37103733
import numpy as np
37113734
import scipy.stats as st
3712-
plt.style.use('seaborn-darkgrid')
3735+
import arviz as az
3736+
plt.style.use('arviz-darkgrid')
37133737
x = np.linspace(-10, 20, 200)
37143738
mus = [0., 4., -1.]
37153739
betas = [2., 2., 4.]
@@ -3832,7 +3856,8 @@ class Rice(PositiveContinuous):
38323856
import matplotlib.pyplot as plt
38333857
import numpy as np
38343858
import scipy.stats as st
3835-
plt.style.use('seaborn-darkgrid')
3859+
import arviz as az
3860+
plt.style.use('arviz-darkgrid')
38363861
x = np.linspace(0, 8, 500)
38373862
nus = [0., 0., 4., 4.]
38383863
sigmas = [1., 2., 1., 2.]
@@ -3994,7 +4019,8 @@ class Logistic(Continuous):
39944019
import matplotlib.pyplot as plt
39954020
import numpy as np
39964021
import scipy.stats as st
3997-
plt.style.use('seaborn-darkgrid')
4022+
import arviz as az
4023+
plt.style.use('arviz-darkgrid')
39984024
x = np.linspace(-5, 5, 200)
39994025
mus = [0., 0., 0., -2.]
40004026
ss = [.4, 1., 2., .4]
@@ -4116,7 +4142,8 @@ class LogitNormal(UnitContinuous):
41164142
import numpy as np
41174143
import scipy.stats as st
41184144
from scipy.special import logit
4119-
plt.style.use('seaborn-darkgrid')
4145+
import arviz as az
4146+
plt.style.use('arviz-darkgrid')
41204147
x = np.linspace(0.0001, 0.9999, 500)
41214148
mus = [0., 0., 0., 1.]
41224149
sigmas = [0.3, 1., 2., 1.]
@@ -4350,7 +4377,8 @@ class Moyal(Continuous):
43504377
import matplotlib.pyplot as plt
43514378
import numpy as np
43524379
import scipy.stats as st
4353-
plt.style.use('seaborn-darkgrid')
4380+
import arviz as az
4381+
plt.style.use('arviz-darkgrid')
43544382
x = np.linspace(-10, 20, 200)
43554383
mus = [-1., 0., 4.]
43564384
sigmas = [2., 2., 4.]

0 commit comments

Comments
 (0)