@@ -194,7 +194,8 @@ class Uniform(BoundedContinuous):
194
194
195
195
import matplotlib.pyplot as plt
196
196
import numpy as np
197
- plt.style.use('seaborn-darkgrid')
197
+ import arviz as az
198
+ plt.style.use('arviz-darkgrid')
198
199
x = np.linspace(-3, 3, 500)
199
200
ls = [0., -2]
200
201
us = [2., 1]
@@ -445,7 +446,8 @@ class Normal(Continuous):
445
446
import matplotlib.pyplot as plt
446
447
import numpy as np
447
448
import scipy.stats as st
448
- plt.style.use('seaborn-darkgrid')
449
+ import arviz as az
450
+ plt.style.use('arviz-darkgrid')
449
451
x = np.linspace(-5, 5, 1000)
450
452
mus = [0., 0., 0., -2.]
451
453
sigmas = [0.4, 1., 2., 0.4]
@@ -591,7 +593,8 @@ class TruncatedNormal(BoundedContinuous):
591
593
import matplotlib.pyplot as plt
592
594
import numpy as np
593
595
import scipy.stats as st
594
- plt.style.use('seaborn-darkgrid')
596
+ import arviz as az
597
+ plt.style.use('arviz-darkgrid')
595
598
x = np.linspace(-10, 10, 1000)
596
599
mus = [0., 0., 0.]
597
600
sigmas = [3.,5.,7.]
@@ -809,7 +812,8 @@ class HalfNormal(PositiveContinuous):
809
812
import matplotlib.pyplot as plt
810
813
import numpy as np
811
814
import scipy.stats as st
812
- plt.style.use('seaborn-darkgrid')
815
+ import arviz as az
816
+ plt.style.use('arviz-darkgrid')
813
817
x = np.linspace(0, 5, 200)
814
818
for sigma in [0.4, 1., 2.]:
815
819
pdf = st.halfnorm.pdf(x, scale=sigma)
@@ -949,7 +953,8 @@ class Wald(PositiveContinuous):
949
953
import matplotlib.pyplot as plt
950
954
import numpy as np
951
955
import scipy.stats as st
952
- plt.style.use('seaborn-darkgrid')
956
+ import arviz as az
957
+ plt.style.use('arviz-darkgrid')
953
958
x = np.linspace(0, 3, 500)
954
959
mus = [1., 1., 1., 3.]
955
960
lams = [1., .2, 3., 1.]
@@ -1169,7 +1174,8 @@ class Beta(UnitContinuous):
1169
1174
import matplotlib.pyplot as plt
1170
1175
import numpy as np
1171
1176
import scipy.stats as st
1172
- plt.style.use('seaborn-darkgrid')
1177
+ import arviz as az
1178
+ plt.style.use('arviz-darkgrid')
1173
1179
x = np.linspace(0, 1, 200)
1174
1180
alphas = [.5, 5., 1., 2., 2.]
1175
1181
betas = [.5, 1., 3., 2., 5.]
@@ -1347,7 +1353,8 @@ class Kumaraswamy(UnitContinuous):
1347
1353
1348
1354
import matplotlib.pyplot as plt
1349
1355
import numpy as np
1350
- plt.style.use('seaborn-darkgrid')
1356
+ import arviz as az
1357
+ plt.style.use('arviz-darkgrid')
1351
1358
x = np.linspace(0, 1, 200)
1352
1359
a_s = [.5, 5., 1., 2., 2.]
1353
1360
b_s = [.5, 1., 3., 2., 5.]
@@ -1453,7 +1460,8 @@ class Exponential(PositiveContinuous):
1453
1460
import matplotlib.pyplot as plt
1454
1461
import numpy as np
1455
1462
import scipy.stats as st
1456
- plt.style.use('seaborn-darkgrid')
1463
+ import arviz as az
1464
+ plt.style.use('arviz-darkgrid')
1457
1465
x = np.linspace(0, 3, 100)
1458
1466
for lam in [0.5, 1., 2.]:
1459
1467
pdf = st.expon.pdf(x, scale=1.0/lam)
@@ -1566,7 +1574,8 @@ class Laplace(Continuous):
1566
1574
import matplotlib.pyplot as plt
1567
1575
import numpy as np
1568
1576
import scipy.stats as st
1569
- plt.style.use('seaborn-darkgrid')
1577
+ import arviz as az
1578
+ plt.style.use('arviz-darkgrid')
1570
1579
x = np.linspace(-10, 10, 1000)
1571
1580
mus = [0., 0., 0., -5.]
1572
1581
bs = [1., 2., 4., 4.]
@@ -1794,7 +1803,8 @@ class Lognormal(PositiveContinuous):
1794
1803
import matplotlib.pyplot as plt
1795
1804
import numpy as np
1796
1805
import scipy.stats as st
1797
- plt.style.use('seaborn-darkgrid')
1806
+ import arviz as az
1807
+ plt.style.use('arviz-darkgrid')
1798
1808
x = np.linspace(0, 3, 100)
1799
1809
mus = [0., 0., 0.]
1800
1810
sigmas = [.25, .5, 1.]
@@ -1951,7 +1961,8 @@ class StudentT(Continuous):
1951
1961
import matplotlib.pyplot as plt
1952
1962
import numpy as np
1953
1963
import scipy.stats as st
1954
- plt.style.use('seaborn-darkgrid')
1964
+ import arviz as az
1965
+ plt.style.use('arviz-darkgrid')
1955
1966
x = np.linspace(-8, 8, 200)
1956
1967
mus = [0., 0., -2., -2.]
1957
1968
sigmas = [1., 1., 1., 2.]
@@ -2115,7 +2126,8 @@ class Pareto(Continuous):
2115
2126
import matplotlib.pyplot as plt
2116
2127
import numpy as np
2117
2128
import scipy.stats as st
2118
- plt.style.use('seaborn-darkgrid')
2129
+ import arviz as az
2130
+ plt.style.use('arviz-darkgrid')
2119
2131
x = np.linspace(0, 4, 1000)
2120
2132
alphas = [1., 2., 5., 5.]
2121
2133
ms = [1., 1., 1., 2.]
@@ -2257,7 +2269,8 @@ class Cauchy(Continuous):
2257
2269
import matplotlib.pyplot as plt
2258
2270
import numpy as np
2259
2271
import scipy.stats as st
2260
- plt.style.use('seaborn-darkgrid')
2272
+ import arviz as az
2273
+ plt.style.use('arviz-darkgrid')
2261
2274
x = np.linspace(-5, 5, 500)
2262
2275
alphas = [0., 0., 0., -2.]
2263
2276
betas = [.5, 1., 2., 1.]
@@ -2373,7 +2386,8 @@ class HalfCauchy(PositiveContinuous):
2373
2386
import matplotlib.pyplot as plt
2374
2387
import numpy as np
2375
2388
import scipy.stats as st
2376
- plt.style.use('seaborn-darkgrid')
2389
+ import arviz as az
2390
+ plt.style.use('arviz-darkgrid')
2377
2391
x = np.linspace(0, 5, 200)
2378
2392
for b in [0.5, 1.0, 2.0]:
2379
2393
pdf = st.cauchy.pdf(x, scale=b)
@@ -2490,7 +2504,8 @@ class Gamma(PositiveContinuous):
2490
2504
import matplotlib.pyplot as plt
2491
2505
import numpy as np
2492
2506
import scipy.stats as st
2493
- plt.style.use('seaborn-darkgrid')
2507
+ import arviz as az
2508
+ plt.style.use('arviz-darkgrid')
2494
2509
x = np.linspace(0, 20, 200)
2495
2510
alphas = [1., 2., 3., 7.5]
2496
2511
betas = [.5, .5, 1., 1.]
@@ -2654,7 +2669,8 @@ class InverseGamma(PositiveContinuous):
2654
2669
import matplotlib.pyplot as plt
2655
2670
import numpy as np
2656
2671
import scipy.stats as st
2657
- plt.style.use('seaborn-darkgrid')
2672
+ import arviz as az
2673
+ plt.style.use('arviz-darkgrid')
2658
2674
x = np.linspace(0, 3, 500)
2659
2675
alphas = [1., 2., 3., 3.]
2660
2676
betas = [1., 1., 1., .5]
@@ -2823,7 +2839,8 @@ class ChiSquared(Gamma):
2823
2839
import matplotlib.pyplot as plt
2824
2840
import numpy as np
2825
2841
import scipy.stats as st
2826
- plt.style.use('seaborn-darkgrid')
2842
+ import arviz as az
2843
+ plt.style.use('arviz-darkgrid')
2827
2844
x = np.linspace(0, 15, 200)
2828
2845
for df in [1, 2, 3, 6, 9]:
2829
2846
pdf = st.chi2.pdf(x, df)
@@ -2868,7 +2885,8 @@ class Weibull(PositiveContinuous):
2868
2885
import matplotlib.pyplot as plt
2869
2886
import numpy as np
2870
2887
import scipy.stats as st
2871
- plt.style.use('seaborn-darkgrid')
2888
+ import arviz as az
2889
+ plt.style.use('arviz-darkgrid')
2872
2890
x = np.linspace(0, 3, 200)
2873
2891
alphas = [.5, 1., 1.5, 5., 5.]
2874
2892
betas = [1., 1., 1., 1., 2]
@@ -3003,7 +3021,8 @@ class HalfStudentT(PositiveContinuous):
3003
3021
import matplotlib.pyplot as plt
3004
3022
import numpy as np
3005
3023
import scipy.stats as st
3006
- plt.style.use('seaborn-darkgrid')
3024
+ import arviz as az
3025
+ plt.style.use('arviz-darkgrid')
3007
3026
x = np.linspace(0, 5, 200)
3008
3027
sigmas = [1., 1., 2., 1.]
3009
3028
nus = [.5, 1., 1., 30.]
@@ -3138,7 +3157,8 @@ class ExGaussian(Continuous):
3138
3157
import matplotlib.pyplot as plt
3139
3158
import numpy as np
3140
3159
import scipy.stats as st
3141
- plt.style.use('seaborn-darkgrid')
3160
+ import arviz as az
3161
+ plt.style.use('arviz-darkgrid')
3142
3162
x = np.linspace(-6, 9, 200)
3143
3163
mus = [0., -2., 0., -3.]
3144
3164
sigmas = [1., 1., 3., 1.]
@@ -3319,7 +3339,8 @@ class VonMises(Continuous):
3319
3339
import matplotlib.pyplot as plt
3320
3340
import numpy as np
3321
3341
import scipy.stats as st
3322
- plt.style.use('seaborn-darkgrid')
3342
+ import arviz as az
3343
+ plt.style.use('arviz-darkgrid')
3323
3344
x = np.linspace(-np.pi, np.pi, 200)
3324
3345
mus = [0., 0., 0., -2.5]
3325
3346
kappas = [.01, 0.5, 4., 2.]
@@ -3419,7 +3440,8 @@ class SkewNormal(Continuous):
3419
3440
import matplotlib.pyplot as plt
3420
3441
import numpy as np
3421
3442
import scipy.stats as st
3422
- plt.style.use('seaborn-darkgrid')
3443
+ import arviz as az
3444
+ plt.style.use('arviz-darkgrid')
3423
3445
x = np.linspace(-4, 4, 200)
3424
3446
for alpha in [-6, 0, 6]:
3425
3447
pdf = st.skewnorm.pdf(x, alpha, loc=0, scale=1)
@@ -3554,7 +3576,8 @@ class Triangular(BoundedContinuous):
3554
3576
import matplotlib.pyplot as plt
3555
3577
import numpy as np
3556
3578
import scipy.stats as st
3557
- plt.style.use('seaborn-darkgrid')
3579
+ import arviz as az
3580
+ plt.style.use('arviz-darkgrid')
3558
3581
x = np.linspace(-2, 10, 500)
3559
3582
lowers = [0., -1, 2]
3560
3583
cs = [2., 0., 6.5]
@@ -3709,7 +3732,8 @@ class Gumbel(Continuous):
3709
3732
import matplotlib.pyplot as plt
3710
3733
import numpy as np
3711
3734
import scipy.stats as st
3712
- plt.style.use('seaborn-darkgrid')
3735
+ import arviz as az
3736
+ plt.style.use('arviz-darkgrid')
3713
3737
x = np.linspace(-10, 20, 200)
3714
3738
mus = [0., 4., -1.]
3715
3739
betas = [2., 2., 4.]
@@ -3832,7 +3856,8 @@ class Rice(PositiveContinuous):
3832
3856
import matplotlib.pyplot as plt
3833
3857
import numpy as np
3834
3858
import scipy.stats as st
3835
- plt.style.use('seaborn-darkgrid')
3859
+ import arviz as az
3860
+ plt.style.use('arviz-darkgrid')
3836
3861
x = np.linspace(0, 8, 500)
3837
3862
nus = [0., 0., 4., 4.]
3838
3863
sigmas = [1., 2., 1., 2.]
@@ -3994,7 +4019,8 @@ class Logistic(Continuous):
3994
4019
import matplotlib.pyplot as plt
3995
4020
import numpy as np
3996
4021
import scipy.stats as st
3997
- plt.style.use('seaborn-darkgrid')
4022
+ import arviz as az
4023
+ plt.style.use('arviz-darkgrid')
3998
4024
x = np.linspace(-5, 5, 200)
3999
4025
mus = [0., 0., 0., -2.]
4000
4026
ss = [.4, 1., 2., .4]
@@ -4116,7 +4142,8 @@ class LogitNormal(UnitContinuous):
4116
4142
import numpy as np
4117
4143
import scipy.stats as st
4118
4144
from scipy.special import logit
4119
- plt.style.use('seaborn-darkgrid')
4145
+ import arviz as az
4146
+ plt.style.use('arviz-darkgrid')
4120
4147
x = np.linspace(0.0001, 0.9999, 500)
4121
4148
mus = [0., 0., 0., 1.]
4122
4149
sigmas = [0.3, 1., 2., 1.]
@@ -4350,7 +4377,8 @@ class Moyal(Continuous):
4350
4377
import matplotlib.pyplot as plt
4351
4378
import numpy as np
4352
4379
import scipy.stats as st
4353
- plt.style.use('seaborn-darkgrid')
4380
+ import arviz as az
4381
+ plt.style.use('arviz-darkgrid')
4354
4382
x = np.linspace(-10, 20, 200)
4355
4383
mus = [-1., 0., 4.]
4356
4384
sigmas = [2., 2., 4.]
0 commit comments