Skip to content

do format #1122

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Feb 22, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,15 @@
# -*- coding: utf-8 -*-

from tensorlayer.app.human_pose_estimation.common import DataReader, visualize_3D_pose, flip_data
from tensorlayer.app.human_pose_estimation.LCN import CGCNN
from tensorlayer.app import computer_vision
import numpy as np

datareader = DataReader()
train_data, test_data = datareader.read_2d(which='scale', mode='gt', read_confidence=False)
train_labels, test_labels = datareader.read_3d(which='scale', mode='gt')
network = CGCNN(pretrained=True)
network = computer_vision.human_pose_estimation('3D-pose')
test_data = flip_data(test_data)
result = network(test_data, is_train=False)
result = network(test_data)
result = datareader.denormalize3D(np.asarray(result), which='scale')
test_data = datareader.denormalize2D(test_data, which='scale')
test_labels = datareader.denormalize3D(test_labels, which='scale')
Expand Down
135 changes: 53 additions & 82 deletions tensorlayer/app/computer_vision.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,10 @@
#! /usr/bin/python
# -*- coding: utf-8 -*-

from tensorlayer.app import YOLOv4, get_anchors, decode, filter_boxes
from tensorlayer.app import YOLOv4
from tensorlayer.app import CGCNN
import numpy as np
import tensorflow as tf
from tensorlayer import logging
import cv2
from tensorlayer.app import yolo4_input_processing, yolo4_output_processing, result_to_json


class object_detection(object):
Expand Down Expand Up @@ -42,8 +40,6 @@ def __init__(self, model_name='yolo4-mscoco'):
self.model_name = model_name
if self.model_name == 'yolo4-mscoco':
self.model = YOLOv4(NUM_CLASS=80, pretrained=True)
elif self.model_name == 'lcn':
self.model = CGCNN(pretrained=True)
else:
raise ("The model does not support.")

Expand All @@ -53,8 +49,6 @@ def __call__(self, input_data):
feature_maps = self.model(batch_data, is_train=False)
pred_bbox = yolo4_output_processing(feature_maps)
output = result_to_json(input_data, pred_bbox)
elif self.model_name == 'lcn':
output = self.model(input_data)
else:
raise NotImplementedError

Expand All @@ -70,78 +64,55 @@ def list(self):
logging.info("The model name list: 'yolov4-mscoco', 'lcn'")


def yolo4_input_processing(original_image):
image_data = cv2.resize(original_image, (416, 416))
image_data = image_data / 255.
images_data = []
for i in range(1):
images_data.append(image_data)
images_data = np.asarray(images_data).astype(np.float32)
batch_data = tf.constant(images_data)
return batch_data


def yolo4_output_processing(feature_maps):
STRIDES = [8, 16, 32]
ANCHORS = get_anchors([12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401])
NUM_CLASS = 80
XYSCALE = [1.2, 1.1, 1.05]
iou_threshold = 0.45
score_threshold = 0.25

bbox_tensors = []
prob_tensors = []
score_thres = 0.2
for i, fm in enumerate(feature_maps):
if i == 0:
output_tensors = decode(fm, 416 // 8, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
elif i == 1:
output_tensors = decode(fm, 416 // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
class human_pose_estimation(object):
"""Model encapsulation.

Parameters
----------
model_name : str
Choose the model to inference.

Methods
---------
__init__()
Initializing the model.
__call__()
(1)Formatted input and output. (2)Inference model.
list()
Abstract method. Return available a list of model_name.

Examples
---------
LCN to estimate 3D human poses from 2D poses, see `tutorial_human_3dpose_estimation_LCN.py
<https://github.com/tensorlayer/tensorlayer/blob/master/example/app_tutorials/tutorial_human_3dpose_estimation_LCN.py>`__
With TensorLayer

>>> # get the whole model
>>> net = tl.app.computer_vision.human_pose_estimation('3D-pose')
>>> # use for inferencing
>>> output = net(img)
"""

def __init__(self, model_name='3D-pose'):
self.model_name = model_name
if self.model_name == '3D-pose':
self.model = CGCNN(pretrained=True)
else:
output_tensors = decode(fm, 416 // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
bbox_tensors.append(output_tensors[0])
prob_tensors.append(output_tensors[1])
pred_bbox = tf.concat(bbox_tensors, axis=1)
pred_prob = tf.concat(prob_tensors, axis=1)
boxes, pred_conf = filter_boxes(
pred_bbox, pred_prob, score_threshold=score_thres, input_shape=tf.constant([416, 416])
)
pred = {'concat': tf.concat([boxes, pred_conf], axis=-1)}

for key, value in pred.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]

boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50, max_total_size=50, iou_threshold=iou_threshold, score_threshold=score_threshold
)
output = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
return output


def result_to_json(image, pred_bbox):
image_h, image_w, _ = image.shape
out_boxes, out_scores, out_classes, num_boxes = pred_bbox
class_names = {}
json_result = []
with open('model/coco.names', 'r') as data:
for ID, name in enumerate(data):
class_names[ID] = name.strip('\n')
nums_class = len(class_names)

for i in range(num_boxes[0]):
if int(out_classes[0][i]) < 0 or int(out_classes[0][i]) > nums_class: continue
coor = out_boxes[0][i]
coor[0] = int(coor[0] * image_h)
coor[2] = int(coor[2] * image_h)
coor[1] = int(coor[1] * image_w)
coor[3] = int(coor[3] * image_w)

score = float(out_scores[0][i])
class_ind = int(out_classes[0][i])
bbox = np.array([coor[1], coor[0], coor[3], coor[2]]).tolist() # [x1,y1,x2,y2]
json_result.append({'image': None, 'category_id': class_ind, 'bbox': bbox, 'score': score})

return json_result
raise ("The model does not support.")

def __call__(self, input_data):
if self.model_name == '3D-pose':
output = self.model(input_data, is_train=False)
else:
raise NotImplementedError

return output

def __repr__(self):
s = ('(model_name={model_name}, model_structure={model}')
s += ')'
return s.format(classname=self.__class__.__name__, **self.__dict__)

@property
def list(self):
logging.info("The model name list: '3D-pose'")
99 changes: 75 additions & 24 deletions tensorlayer/app/computer_vision_object_detection/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,27 +147,78 @@ def decode_train(conv_output, output_size, NUM_CLASS, STRIDES, ANCHORS, i=0, XYS
return tf.concat([pred_xywh, pred_conf, pred_prob], axis=-1)


# def weights_sorted():
# # download weights
# maybe_download_and_extract(
# 'yolov4.npz',
# model_path,
# 'https://github.com/',
# ) # ls -al
# weights = []
# track_weights = []
# weights_dict = {}
#
# npz = np.load(model_path, allow_pickle=True)
# # get weight list
# for val in sorted(npz.items()):
# logging.info(" Loading weights %s in %s" % (str(val[1].shape), val[0]))
# try:
# weights.append(int(val[0].split('/')[0].split('-')[-1]))
# track_weights.append(val[0])
# except:
# pass
# zip_weights = zip(weights, track_weights)
# zip_weights = sorted(zip_weights)
# for value, key in zip_weights:
# print(key)
def yolo4_input_processing(original_image):
image_data = cv2.resize(original_image, (416, 416))
image_data = image_data / 255.
images_data = []
for i in range(1):
images_data.append(image_data)
images_data = np.asarray(images_data).astype(np.float32)
batch_data = tf.constant(images_data)
return batch_data


def yolo4_output_processing(feature_maps):
STRIDES = [8, 16, 32]
ANCHORS = get_anchors([12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401])
NUM_CLASS = 80
XYSCALE = [1.2, 1.1, 1.05]
iou_threshold = 0.45
score_threshold = 0.25

bbox_tensors = []
prob_tensors = []
score_thres = 0.2
for i, fm in enumerate(feature_maps):
if i == 0:
output_tensors = decode(fm, 416 // 8, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
elif i == 1:
output_tensors = decode(fm, 416 // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
else:
output_tensors = decode(fm, 416 // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
bbox_tensors.append(output_tensors[0])
prob_tensors.append(output_tensors[1])
pred_bbox = tf.concat(bbox_tensors, axis=1)
pred_prob = tf.concat(prob_tensors, axis=1)
boxes, pred_conf = filter_boxes(
pred_bbox, pred_prob, score_threshold=score_thres, input_shape=tf.constant([416, 416])
)
pred = {'concat': tf.concat([boxes, pred_conf], axis=-1)}

for key, value in pred.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]

boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50, max_total_size=50, iou_threshold=iou_threshold, score_threshold=score_threshold
)
output = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
return output


def result_to_json(image, pred_bbox):
image_h, image_w, _ = image.shape
out_boxes, out_scores, out_classes, num_boxes = pred_bbox
class_names = {}
json_result = []
with open('model/coco.names', 'r') as data:
for ID, name in enumerate(data):
class_names[ID] = name.strip('\n')
nums_class = len(class_names)

for i in range(num_boxes[0]):
if int(out_classes[0][i]) < 0 or int(out_classes[0][i]) > nums_class: continue
coor = out_boxes[0][i]
coor[0] = int(coor[0] * image_h)
coor[2] = int(coor[2] * image_h)
coor[1] = int(coor[1] * image_w)
coor[3] = int(coor[3] * image_w)

score = float(out_scores[0][i])
class_ind = int(out_classes[0][i])
bbox = np.array([coor[1], coor[0], coor[3], coor[2]]).tolist() # [x1,y1,x2,y2]
json_result.append({'image': None, 'category_id': class_ind, 'bbox': bbox, 'score': score})

return json_result
4 changes: 2 additions & 2 deletions tensorlayer/app/computer_vision_object_detection/yolov4.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,7 +222,7 @@ def YOLOv4(NUM_CLASS, pretrained=False):
network = Model(input_layer, [conv_sbbox, conv_mbbox, conv_lbbox])

if pretrained:
restore_params(network, model_path='model/model.npz')
restore_params(network, model_path='model/yolov4_model.npz')

return network

Expand All @@ -236,7 +236,7 @@ def restore_params(network, model_path='models.npz'):
print("Download the model file, placed in the /model ")
print("Weights download: ", weights_url['link'], "password:", weights_url['password'])

txt_path = 'model/yolov4_config.txt'
txt_path = 'model/yolov4_weights_config.txt'
f = open(txt_path, "r")
line = f.readlines()
for i in range(len(line)):
Expand Down
4 changes: 2 additions & 2 deletions tensorlayer/app/human_pose_estimation/LCN.py
Original file line number Diff line number Diff line change
Expand Up @@ -288,7 +288,7 @@ def restore_params(network, model_path='model.npz'):
print("Download the model file, placed in the /model ")
print("Weights download: ", weights_url['link'], "password:", weights_url['password'])

txt_path = 'model/pose_config.txt'
txt_path = 'model/pose_weights_config.txt'
f = open(txt_path, "r")
line = f.readlines()
for i in range(len(line)):
Expand Down Expand Up @@ -325,7 +325,7 @@ def CGCNN(pretrained=True):
"""
if pretrained:
network = cgcnn_inference()
restore_params(network, model_path='model/model.npz')
restore_params(network, model_path='model/lcn_model.npz')
else:
network = cgcnn_train()
return network