Easy-to-use and powerful LLM and SLM library with awesome model zoo.
-
Updated
Apr 25, 2025 - Python
Easy-to-use and powerful LLM and SLM library with awesome model zoo.
100+ Chinese Word Vectors 上百种预训练中文词向量
Use PEFT or Full-parameter to CPT/SFT/DPO/GRPO 500+ LLMs (Qwen2.5, Llama4, InternLM3, GLM4, Mistral, Yi1.5, DeepSeek-R1, ...) and 200+ MLLMs (Qwen2.5-VL, Qwen2.5-Omni, Qwen2-Audio, Ovis2, InternVL3, Llava, MiniCPM-V-2.6, GLM4v, Xcomposer2.5, DeepSeek-VL2, Phi4, GOT-OCR2, ...).
Siamese and triplet networks with online pair/triplet mining in PyTorch
A curated list of community detection research papers with implementations.
Extensible, parallel implementations of t-SNE
ChatWeb can crawl web pages, read PDF, DOCX, TXT, and extract the main content, then answer your questions based on the content, or summarize the key points.
Embedding, NMT, Text_Classification, Text_Generation, NER etc.
Minimum-distortion embedding with PyTorch
Angular penalty loss functions in Pytorch (ArcFace, SphereFace, Additive Margin, CosFace)
✨ AI interface for tinkerers (Ollama, Haystack RAG, Python)
Run Effective Large Batch Contrastive Learning Beyond GPU/TPU Memory Constraint
Macadam是一个以Tensorflow(Keras)和bert4keras为基础,专注于文本分类、序列标注和关系抽取的自然语言处理工具包。支持RANDOM、WORD2VEC、FASTTEXT、BERT、ALBERT、ROBERTA、NEZHA、XLNET、ELECTRA、GPT-2等EMBEDDING嵌入; 支持FineTune、FastText、TextCNN、CharCNN、BiRNN、RCNN、DCNN、CRNN、DeepMoji、SelfAttention、HAN、Capsule等文本分类算法; 支持CRF、Bi-LSTM-CRF、CNN-LSTM、DGCNN、Bi-LSTM-LAN、Lattice-LSTM-Batch、MRC等序列标注算法。
Multi-Hop Logical Reasoning in Knowledge Graphs
Extract knowledge from all information sources using gpt and other language models. Index and make Q&A session with information sources.
Redis Vector Library (RedisVL) -- the AI-native Python client for Redis.
The TensorFlow reference implementation of 'GEMSEC: Graph Embedding with Self Clustering' (ASONAM 2019).
Add a description, image, and links to the embedding topic page so that developers can more easily learn about it.
To associate your repository with the embedding topic, visit your repo's landing page and select "manage topics."