Skip to content

[Bug]: xgrammar crashes with speculative decoding #11484

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
1 task done
Ezraxz opened this issue Dec 25, 2024 · 10 comments
Open
1 task done

[Bug]: xgrammar crashes with speculative decoding #11484

Ezraxz opened this issue Dec 25, 2024 · 10 comments
Labels
bug Something isn't working structured-output

Comments

@Ezraxz
Copy link

Ezraxz commented Dec 25, 2024

Your current environment

The output of `python collect_env.py`
$python collect_env.py 
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Alibaba Group Enterprise Linux Server 7.2 (Paladin) (x86_64)
GCC version: (GCC) 10.2.1 20200825 (Alibaba 10.2.1-3 2.17)
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.32

Python version: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.9.151-015.ali3000.alios7.x86_64-x86_64-with-glibc2.32
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA L20
GPU 1: NVIDIA L20

Nvidia driver version: 535.161.08
cuDNN version: Probably one of the following:
/usr/local/cuda/targets/x86_64-linux/lib/libcudnn.so.8.9.3
/usr/local/cuda/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.3
/usr/local/cuda/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.3
/usr/local/cuda/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.3
/usr/local/cuda/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.3
/usr/local/cuda/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.3
/usr/local/cuda/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.3
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                128
On-line CPU(s) list:   0-127
Thread(s) per core:    2
Core(s) per socket:    32
Socket(s):             2
NUMA node(s):          2
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 143
Model name:            Intel(R) Xeon(R) Gold 6462C
Stepping:              8
CPU MHz:               3899.816
CPU max MHz:           3900.0000
CPU min MHz:           800.0000
BogoMIPS:              6600.00
Virtualization:        VT-x
L1d cache:             48K
L1i cache:             32K
L2 cache:              2048K
L3 cache:              61440K
NUMA node0 CPU(s):     0-31,64-95
NUMA node1 CPU(s):     32-63,96-127
Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb invpcid_single cat_l2 cdp_l3 ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq pconfig flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] flake8==7.1.1
[pip3] flashinfer==0.1.6+cu121torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchaudio==2.1.0+cu121
[pip3] torchvision==0.20.1
[pip3] transformers==4.47.0
[pip3] triton==3.1.0
[conda] flashinfer                0.1.6+cu121torch2.4          pypi_0    pypi
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.5.1                    pypi_0    pypi
[conda] torchaudio                2.1.0+cu121              pypi_0    pypi
[conda] torchvision               0.20.1                   pypi_0    pypi
[conda] transformers              4.47.0                   pypi_0    pypi
[conda] triton                    3.1.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.5
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      SYS     0-31,64-95      0               N/A
GPU1    SYS      X      32-63,96-127    1               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=GPU-4fc988d5-d6ed-a0c6-4c45-3b7dccb2e7a2,GPU-e671ef65-d6ae-ecc4-bf99-777fe77a5207
LD_LIBRARY_PATH=/opt/conda/lib/python3.10/site-packages/cv2/../../lib64:/opt/conda/lib/python3.10/site-packages/nvidia/nvjitlink/lib::/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64
NVIDIA_DRIVER_CAPABILITIES=all
CUDA_MODULE_LOADING=LAZY

Model Input Dumps

No response

🐛 Describe the bug

When I use xgrammer as guided decoding backend, it crashes with speculative decoding. It works well without speculative decoding.
shell script:

export VLLM_ATTENTION_BACKEND=FLASHINFER
export TOKENIZERS_PARALLELISM=false
model_path="./Qwen2-72B-Instruct-GPTQ-Int4/"
speculative_model_path="./Qwen2-7B-Instruct-GPTQ-Int4/"

max_model_len=8192
port=8000
max_num_seqs=32
max_num_batched_tokens=4096
python -m vllm.entrypoints.openai.api_server \
    --model ${model_path} \
    --served-model-name model \
    --max-model-len ${max_model_len} \
    --max-seq-len-to-capture ${max_model_len} \
    --distributed-executor-backend mp \
    --disable-log-requests \
    --tensor-parallel-size 2 \
    --pipeline-parallel-size 1 \
    --disable-custom-all-reduce \
    --uvicorn-log-level error \
    --port ${port} \
    --max-num-seqs ${max_num_seqs} \
    --gpu-memory-utilization 0.95 \
    --enable-prefix-caching \
    --enable-chunked-prefill \
    --max-num-batched-tokens ${max_num_batched_tokens} \
    --speculative-model ${speculative_model_path} \
    --speculative-draft-tensor-parallel-size 2 \
    --num-speculative-tokens 3 \
    --speculative-disable-by-batch-size 10 \
    --compilation-config 3 \

output:

INFO 12-25 15:08:42 chat_utils.py:333] Detected the chat template content format to be 'string'. You can set `--chat-template-content-format` to override this.
INFO 12-25 15:08:47 model_runner_base.py:120] Writing input of failed execution to /tmp/err_execute_model_input_20241225-150847.pkl...
WARNING 12-25 15:08:47 model_runner_base.py:143] Failed to pickle inputs of failed execution: cannot pickle 'flashinfer._prefill.BatchPrefillWithPagedKVCachePyTorchWrapper' object
ERROR 12-25 15:08:47 engine.py:135] IndexError('Error in model execution: tuple index out of range')
ERROR 12-25 15:08:47 engine.py:135] Traceback (most recent call last):
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/worker/model_runner_base.py", line 116, in _wrapper
ERROR 12-25 15:08:47 engine.py:135]     return func(*args, **kwargs)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 1729, in execute_model
ERROR 12-25 15:08:47 engine.py:135]     logits = self.model.compute_logits(hidden_or_intermediate_states,
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/models/qwen2.py", line 487, in compute_logits
ERROR 12-25 15:08:47 engine.py:135]     logits = self.logits_processor(self.lm_head, hidden_states,
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
ERROR 12-25 15:08:47 engine.py:135]     return self._call_impl(*args, **kwargs)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
ERROR 12-25 15:08:47 engine.py:135]     return forward_call(*args, **kwargs)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/layers/logits_processor.py", line 77, in forward
ERROR 12-25 15:08:47 engine.py:135]     logits = _apply_logits_processors(logits, sampling_metadata)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/layers/logits_processor.py", line 153, in _apply_logits_processors
ERROR 12-25 15:08:47 engine.py:135]     logits_row = logits_processor(past_tokens_ids,
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/guided_decoding/xgrammar_decoding.py", line 258, in __call__
ERROR 12-25 15:08:47 engine.py:135]     sampled_token = input_ids[-1]
ERROR 12-25 15:08:47 engine.py:135] IndexError: tuple index out of range
ERROR 12-25 15:08:47 engine.py:135] 
ERROR 12-25 15:08:47 engine.py:135] The above exception was the direct cause of the following exception:
ERROR 12-25 15:08:47 engine.py:135] 
ERROR 12-25 15:08:47 engine.py:135] Traceback (most recent call last):
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 133, in start
ERROR 12-25 15:08:47 engine.py:135]     self.run_engine_loop()
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 196, in run_engine_loop
ERROR 12-25 15:08:47 engine.py:135]     request_outputs = self.engine_step()
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 214, in engine_step
ERROR 12-25 15:08:47 engine.py:135]     raise e
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 205, in engine_step
ERROR 12-25 15:08:47 engine.py:135]     return self.engine.step()
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 1405, in step
ERROR 12-25 15:08:47 engine.py:135]     outputs = self.model_executor.execute_model(
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/executor/distributed_gpu_executor.py", line 82, in execute_model
ERROR 12-25 15:08:47 engine.py:135]     driver_outputs = self._driver_execute_model(execute_model_req)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/executor/multiproc_gpu_executor.py", line 120, in _driver_execute_model
ERROR 12-25 15:08:47 engine.py:135]     return self.driver_worker.execute_model(execute_model_req)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 12-25 15:08:47 engine.py:135]     return func(*args, **kwargs)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/spec_decode/spec_decode_worker.py", line 492, in execute_model
ERROR 12-25 15:08:47 engine.py:135]     return self._run_no_spec(execute_model_req,
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/contextlib.py", line 79, in inner
ERROR 12-25 15:08:47 engine.py:135]     return func(*args, **kwds)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/spec_decode/spec_decode_worker.py", line 649, in _run_no_spec
ERROR 12-25 15:08:47 engine.py:135]     self.proposer_worker.execute_model(execute_model_req)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/spec_decode/multi_step_worker.py", line 69, in execute_model
ERROR 12-25 15:08:47 engine.py:135]     return self.worker.execute_model(*args, **kwargs)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 343, in execute_model
ERROR 12-25 15:08:47 engine.py:135]     output = self.model_runner.execute_model(
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 12-25 15:08:47 engine.py:135]     return func(*args, **kwargs)
ERROR 12-25 15:08:47 engine.py:135]   File "/opt/conda/lib/python3.10/site-packages/vllm/worker/model_runner_base.py", line 146, in _wrapper
ERROR 12-25 15:08:47 engine.py:135]     raise type(err)(f"Error in model execution: "
ERROR 12-25 15:08:47 engine.py:135] IndexError: Error in model execution: tuple index out of range
CRITICAL 12-25 15:08:47 launcher.py:99] MQLLMEngine is already dead, terminating server process
CRITICAL 12-25 15:08:47 launcher.py:99] MQLLMEngine is already dead, terminating server process
CRITICAL 12-25 15:08:47 launcher.py:99] MQLLMEngine is already dead, terminating server process
CRITICAL 12-25 15:08:47 launcher.py:99] MQLLMEngine is already dead, terminating server process
CRITICAL 12-25 15:08:47 launcher.py:99] MQLLMEngine is already dead, terminating server process
CRITICAL 12-25 15:08:47 launcher.py:99] MQLLMEngine is already dead, terminating server process
CRITICAL 12-25 15:08:47 launcher.py:99] MQLLMEngine is already dead, terminating server process
CRITICAL 12-25 15:08:47 launcher.py:99] MQLLMEngine is already dead, terminating server process
Process SpawnProcess-1:
Traceback (most recent call last):
  File "/opt/conda/lib/python3.10/multiprocessing/process.py", line 317, in _bootstrap
    util._exit_function()
  File "/opt/conda/lib/python3.10/multiprocessing/util.py", line 357, in _exit_function
    p.join()
  File "/opt/conda/lib/python3.10/multiprocessing/process.py", line 149, in join
    res = self._popen.wait(timeout)
  File "/opt/conda/lib/python3.10/multiprocessing/popen_fork.py", line 43, in wait
    return self.poll(os.WNOHANG if timeout == 0.0 else 0)
  File "/opt/conda/lib/python3.10/multiprocessing/popen_fork.py", line 27, in poll
    pid, sts = os.waitpid(self.pid, flag)
  File "/opt/conda/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 351, in signal_handler
    raise KeyboardInterrupt("MQLLMEngine terminated")
KeyboardInterrupt: MQLLMEngine terminated

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@Ezraxz Ezraxz added the bug Something isn't working label Dec 25, 2024
@badrjd
Copy link

badrjd commented Dec 31, 2024

Encountered same issue with llama 3.3 70B on v0.6.6.

@w013nad
Copy link

w013nad commented Jan 7, 2025

Same issue here qwen32b_AWQ also on v0.6.6. However, for me, it failed with guided decoding. I tried all 3 guided decoding options.

@russellb
Copy link
Member

I see a script for starting vllm. Do you also have a sample API request that demonstrates the problem?

@nFunctor
Copy link
Contributor

For me, any guided json decoding fails whenever speculative ngram decoding is enabled. Here's an example:

system_prompt = """
Fill the following json schema for a character creator in D&D:
{
    "name": "string",
    "race": "string",
    "class": "string",
    "level": "int",
    "background": "string",
    "alignment": "string",
    "backstory": "string"
}
"""

user_prompt = "Make me a bunch of characters from Jason Bourne movies. Output a list (array) of character json objects."

messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": user_prompt}
]

json_schema_multiple = {
    "type": "array",
    "items": {
        "type": "object",
        "properties": {
            "name": {"type": "string"},
            "race": {"type": "string"}, 
            "class": {"type": "string"},
            "level": {"type": "integer"},
            "background": {"type": "string"},
            "alignment": {"type": "string"},
            "backstory": {"type": "string"}
        },
        "required": ["name", "race", "class", "level", "background", "alignment", 
                    "backstory"]
    }
}

result = client.chat.completions.create(
    model=model_id,
    messages=messages,
    max_tokens=3000,
    temperature=0.,
    stream=False,
    extra_body={"guided_json": json_schema_multiple}
)

The client is initialised as usual and the serve command is

vllm serve "Qwen/Qwen2.5-7B-Instruct-AWQ" \
    --max-model-len 4096 \
    --dtype "auto" \
    --trust-remote-code \
    --enable-prefix-caching \
    --speculative-model "[ngram]" --num-speculative-tokens 5 --ngram-prompt-lookup-max 4

Tried on both 0.6.6.post1 and latest nightly build (I had some hopes that the resolved #11637 pull request would address this as well, but guess not).

@russellb
Copy link
Member

For me, any guided json decoding fails whenever speculative ngram decoding is enabled. Here's an example:

Thanks! It's easy to reproduce with this example. I'll look into it.

@russellb
Copy link
Member

I've looked into this and it seems the two features just fundamentally do not work together. I'm going to update the feature compatibility matrix in the docs to reflect this.

russellb added a commit to russellb/vllm that referenced this issue Jan 23, 2025
Update the feature compatibility matrix to reflect that speculative
decoding and structured output do not currently work together.

Related to issue vllm-project#11484

Signed-off-by: Russell Bryant <[email protected]>
@nFunctor
Copy link
Contributor

@russellb thanks for looking into it. Do you think there is a possibility to disable speculative decoding whenever a guided request is submitted? In some pipelines it would be nice to have it available whenever one does a plain generation request.

@russellb
Copy link
Member

@russellb thanks for looking into it. Do you think there is a possibility to disable speculative decoding whenever a guided request is submitted? In some pipelines it would be nice to have it available whenever one does a plain generation request.

That's a good idea. My first thought was to at least make vllm behave better, perhaps respond with a 400 error of some type instead of just crashing! Your idea sounds like a good step to look at after that.

@russellb
Copy link
Member

PR #12484 will make vllm handle this failure more gracefully. vllm won't crash and you'll get a "409 Conflict" response from the API server.

@badrjd
Copy link

badrjd commented Jan 31, 2025

@russellb I noticed that xgrammar crashes with speculative decoding, but outlines works (though its slower). Another solution would be to switch to outlines when needed to keep everything working. It's already done for certain features that xgrammar doesn't support like list selection.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working structured-output
Projects
Status: No status
Development

No branches or pull requests

5 participants