Skip to content

Add benchmark for DeepGEMM and vLLM Block FP8 Dense GEMM #13917

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 129 additions & 0 deletions benchmarks/kernels/deepgemm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# DeepSeek DeepGEMM Kernels Benchmark

This directory includes benchmarks between DeepSeek's DeepGEMM block fp8 kernels against vLLM's existing triton and CUTLASS-based kernels.

Currently this just includes dense GEMMs and only works on Hopper GPUs.

## Setup

You need to install vLLM in your usual fashion, then install DeepGEMM from source in its own directory:

```
git clone --recursive https://github.com/deepseek-ai/DeepGEMM
cd DeepGEMM
python setup.py install
uv pip install -e .
```

## Usage

```
python benchmark_fp8_block_dense_gemm.py
INFO 02-26 21:55:13 [__init__.py:207] Automatically detected platform cuda.
===== STARTING FP8 GEMM BENCHMARK =====
PyTorch version: 2.5.1+cu124
CUDA version: 12.4
Triton version: 3.1.0
Using device: NVIDIA H100 80GB HBM3
WARNING 02-26 21:55:15 [fp8_utils.py:458] Using default W8A8 Block FP8 kernel config. Performance might be sub-optimal! Config file not found at /home/mgoin/code/vllm/vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json
INFO 02-26 21:55:15 [fp8_utils.py:449] Using configuration from /home/mgoin/code/vllm/vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json for W8A8 Block FP8 kernel.
WARNING 02-26 21:55:16 [fp8_utils.py:458] Using default W8A8 Block FP8 kernel config. Performance might be sub-optimal! Config file not found at /home/mgoin/code/vllm/vllm/model_executor/layers/quantization/utils/configs/N=18432,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json
WARNING 02-26 21:55:17 [fp8_utils.py:458] Using default W8A8 Block FP8 kernel config. Performance might be sub-optimal! Config file not found at /home/mgoin/code/vllm/vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json
INFO 02-26 21:55:17 [fp8_utils.py:449] Using configuration from /home/mgoin/code/vllm/vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json for W8A8 Block FP8 kernel.
INFO 02-26 21:55:17 [fp8_utils.py:449] Using configuration from /home/mgoin/code/vllm/vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json for W8A8 Block FP8 kernel.

===== PERFORMANCE COMPARISON =====

DeepGEMM Implementation:
+------+-------+-------+-----------+--------+--------+
| m | n | k | Time (μs) | TFLOPS | GB/s |
+------+-------+-------+-----------+--------+--------+
| 8 | 4096 | 7168 | 102.9 | 4.6 | 286.4 |
| 8 | 7168 | 18432 | 70.8 | 29.8 | 1868.8 |
| 8 | 18432 | 7168 | 69.3 | 30.5 | 1911.8 |
| 64 | 4096 | 7168 | 69.1 | 54.4 | 439.0 |
| 64 | 7168 | 18432 | 69.4 | 243.6 | 1933.6 |
| 64 | 18432 | 7168 | 70.4 | 240.3 | 1917.2 |
| 64 | 24576 | 1536 | 70.1 | 68.9 | 584.6 |
| 64 | 32768 | 512 | 68.4 | 31.4 | 307.1 |
| 64 | 7168 | 16384 | 69.5 | 216.3 | 1718.5 |
| 128 | 4096 | 7168 | 141.1 | 53.3 | 222.1 |
| 128 | 7168 | 18432 | 71.9 | 470.5 | 1896.1 |
| 128 | 18432 | 7168 | 69.3 | 488.2 | 1988.2 |
| 1024 | 4096 | 7168 | 89.7 | 670.1 | 502.5 |
| 1024 | 18432 | 7168 | 279.0 | 969.8 | 635.2 |
| 2048 | 4096 | 7168 | 175.1 | 687.0 | 347.4 |
| 4096 | 4096 | 7168 | 335.4 | 717.0 | 275.1 |
+------+-------+-------+-----------+--------+--------+

vLLM Triton Implementation:
+------+-------+-------+-----------+--------+--------+--------------+
| m | n | k | Time (μs) | TFLOPS | GB/s | vs DeepGEMM |
+------+-------+-------+-----------+--------+--------+--------------+
| 8 | 4096 | 7168 | 74.0 | 6.3 | 398.2 | 1.39x faster |
| 8 | 7168 | 18432 | 89.6 | 23.6 | 1478.1 | 0.79x slower |
| 8 | 18432 | 7168 | 113.2 | 18.7 | 1170.4 | 0.61x slower |
| 64 | 4096 | 7168 | 79.4 | 47.3 | 382.2 | 0.87x slower |
| 64 | 7168 | 18432 | 98.5 | 171.7 | 1363.0 | 0.70x slower |
| 64 | 18432 | 7168 | 119.5 | 141.5 | 1129.4 | 0.59x slower |
| 64 | 24576 | 1536 | 37.6 | 128.4 | 1089.7 | 1.86x faster |
| 64 | 32768 | 512 | 38.7 | 55.5 | 542.6 | 1.77x faster |
| 64 | 7168 | 16384 | 86.1 | 174.5 | 1386.4 | 0.81x slower |
| 128 | 4096 | 7168 | 90.7 | 82.9 | 345.4 | 1.56x faster |
| 128 | 7168 | 18432 | 144.0 | 234.9 | 946.9 | 0.50x slower |
| 128 | 18432 | 7168 | 229.5 | 147.4 | 600.1 | 0.30x slower |
| 1024 | 4096 | 7168 | 242.3 | 248.2 | 186.1 | 0.37x slower |
| 1024 | 18432 | 7168 | 897.8 | 301.4 | 197.4 | 0.31x slower |
| 2048 | 4096 | 7168 | 463.0 | 259.7 | 131.4 | 0.38x slower |
| 4096 | 4096 | 7168 | 901.8 | 266.7 | 102.3 | 0.37x slower |
+------+-------+-------+-----------+--------+--------+--------------+

vLLM CUTLASS Implementation:
+------+-------+-------+-----------+--------+--------+--------------+--------------+
| m | n | k | Time (μs) | TFLOPS | GB/s | vs DeepGEMM | vs Triton |
+------+-------+-------+-----------+--------+--------+--------------+--------------+
| 8 | 4096 | 7168 | 34.6 | 13.6 | 852.3 | 2.98x faster | 2.14x faster |
| 8 | 7168 | 18432 | 78.9 | 26.8 | 1677.3 | 0.90x slower | 1.13x faster |
| 8 | 18432 | 7168 | 81.2 | 26.0 | 1631.1 | 0.85x slower | 1.39x faster |
| 64 | 4096 | 7168 | 36.9 | 101.9 | 822.9 | 1.87x faster | 2.15x faster |
| 64 | 7168 | 18432 | 87.4 | 193.4 | 1535.2 | 0.79x slower | 1.13x faster |
| 64 | 18432 | 7168 | 85.0 | 199.0 | 1587.6 | 0.83x slower | 1.41x faster |
| 64 | 24576 | 1536 | 28.0 | 172.8 | 1465.8 | 2.51x faster | 1.35x faster |
| 64 | 32768 | 512 | 28.8 | 74.5 | 728.5 | 2.37x faster | 1.34x faster |
| 64 | 7168 | 16384 | 77.9 | 193.0 | 1532.8 | 0.89x slower | 1.11x faster |
| 128 | 4096 | 7168 | 39.1 | 192.4 | 802.0 | 3.61x faster | 2.32x faster |
| 128 | 7168 | 18432 | 93.7 | 360.8 | 1454.2 | 0.77x slower | 1.54x faster |
| 128 | 18432 | 7168 | 85.7 | 394.8 | 1608.0 | 0.81x slower | 2.68x faster |
| 1024 | 4096 | 7168 | 99.7 | 603.1 | 452.2 | 0.90x slower | 2.43x faster |
| 1024 | 18432 | 7168 | 331.3 | 816.7 | 534.9 | 0.84x slower | 2.71x faster |
| 2048 | 4096 | 7168 | 198.3 | 606.6 | 306.7 | 0.88x slower | 2.34x faster |
| 4096 | 4096 | 7168 | 392.2 | 613.2 | 235.3 | 0.86x slower | 2.30x faster |
+------+-------+-------+-----------+--------+--------+--------------+--------------+

===== AVERAGE PERFORMANCE =====
+----------------+------------+----------+---------------+
| Implementation | Avg TFLOPS | Avg GB/s | Avg Time (ms) |
+----------------+------------+----------+---------------+
| DeepGEMM | 310.98 | 1052.10 | 0.11 |
| vLLM Triton | 144.30 | 715.60 | 0.23 |
| vLLM CUTLASS | 286.78 | 1076.67 | 0.11 |
+----------------+------------+----------+---------------+

===== AVERAGE SPEEDUPS =====
+-----------------------------+--------------+
| Comparison | Speedup |
+-----------------------------+--------------+
| DeepGEMM vs vLLM Triton | 1.71x faster |
| DeepGEMM vs vLLM CUTLASS | 0.94x slower |
| vLLM CUTLASS vs vLLM Triton | 1.84x faster |
+-----------------------------+--------------+

===== ACCURACY COMPARISON =====
+----------------+-----------------------+
| Implementation | Avg Diff vs Reference |
+----------------+-----------------------+
| DeepGEMM | 0.000684 |
| vLLM Triton | 0.000684 |
| vLLM CUTLASS | 0.000684 |
+----------------+-----------------------+
```
Loading