Skip to content

[Model] use AutoWeightsLoader for stablelm,starcoder2,zamba2 #16103

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 50 additions & 44 deletions vllm/model_executor/models/stablelm.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
from vllm.sequence import IntermediateTensors

from .interfaces import SupportsPP
from .utils import (is_pp_missing_parameter,
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)

Expand Down Expand Up @@ -253,6 +253,45 @@ def forward(
hidden_states = self.norm(hidden_states)
return hidden_states

def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params


class StablelmForCausalLM(nn.Module, SupportsPP):

Expand Down Expand Up @@ -308,46 +347,13 @@ def sample(

def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
loader = AutoWeightsLoader(
self,
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
skip_prefixes=[
"rotary_emb.inv_freq", "rotary_emb.cos_cached",
"rotary_emb.sin_cached"
],
)
return loader.load_weights(weights)
84 changes: 45 additions & 39 deletions vllm/model_executor/models/starcoder2.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@
from vllm.sequence import IntermediateTensors

from .interfaces import SupportsPP
from .utils import (is_pp_missing_parameter,
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)

Expand Down Expand Up @@ -256,6 +256,41 @@ def forward(
hidden_states = self.norm(hidden_states)
return hidden_states

def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]

params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params


class Starcoder2ForCausalLM(nn.Module, SupportsPP):

Expand Down Expand Up @@ -319,41 +354,12 @@ def sample(

def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]

params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue

for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue

if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
loader = AutoWeightsLoader(
self,
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
skip_prefixes=([
"rotary_emb.inv_freq", "lm_head.weight"
] if self.config.tie_word_embeddings else ["rotary_emb.inv_freq"]),
)
return loader.load_weights(weights)
78 changes: 40 additions & 38 deletions vllm/model_executor/models/zamba2.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@
from vllm.sequence import IntermediateTensors

from .interfaces import HasInnerState, IsHybrid, SupportsV0Only
from .utils import maybe_prefix
from .utils import AutoWeightsLoader, WeightsMapper, maybe_prefix


class Zamba2LoRA(nn.Module):
Expand Down Expand Up @@ -777,6 +777,37 @@ def forward(
hidden_states = self.final_layernorm(hidden_states)
return hidden_states

def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]

params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for chkpt_weight_name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in chkpt_weight_name:
continue
chkpt_weight_name = chkpt_weight_name.replace(
weight_name, param_name)
param = params_dict[chkpt_weight_name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if chkpt_weight_name not in params_dict:
continue
param = params_dict[chkpt_weight_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(chkpt_weight_name)
return loaded_params


class Zamba2ForCausalLM(nn.Module, HasInnerState, IsHybrid, SupportsV0Only):
"""Zamba2 model with causal language modeling head.
Expand All @@ -787,6 +818,12 @@ class Zamba2ForCausalLM(nn.Module, HasInnerState, IsHybrid, SupportsV0Only):
- Support for model parallelism and quantization
- Sampling capabilities for text generation
"""
# To ensure correct weight loading and mapping.
hf_to_vllm_mapper = WeightsMapper(orig_to_new_substr={
"A_log": "A",
"0.weight": "A.weight",
"1.weight": "B.weight",
})

def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
"""Initialize the Zamba2 model for causal language modeling.
Expand Down Expand Up @@ -992,40 +1029,5 @@ def sample(

def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]

weights_dict = {}
for key, loaded_weight in weights:
if "A_log" in key:
key = key.replace("A_log", "A")
elif "adapter_list" in key:
key = key.replace("0.weight", "A.weight")
key = key.replace("1.weight", "B.weight")
weights_dict[key] = loaded_weight

params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for chkpt_weight_name, loaded_weight in weights_dict.items():
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in chkpt_weight_name:
continue
chkpt_weight_name = chkpt_weight_name.replace(
weight_name, param_name)
param = params_dict[chkpt_weight_name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if chkpt_weight_name not in params_dict:
continue
param = params_dict[chkpt_weight_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(chkpt_weight_name)
return loaded_params
loader = AutoWeightsLoader(self)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)