-
-
Notifications
You must be signed in to change notification settings - Fork 7.7k
Inclusion of InternVLChatModel In PP_SUPPORTED_MODELS(Pipeline Parallelism) #7860
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Inclusion of InternVLChatModel In PP_SUPPORTED_MODELS(Pipeline Parallelism) #7860
Conversation
Updating Branch
Updating branch
Updating Branch
Updating branch
Updating branch
Updating Branch
👋 Hi! Thank you for contributing to the vLLM project. Once the PR is approved and ready to go, please make sure to run full CI as it is required to merge (or just use auto-merge). To run full CI, you can do one of these:
🚀 |
Thanks for implementing this, can you add tests to verify the model's behavior under PP setting? |
[CI/Build] Avoid downloading all HF files in `RemoteOpenAIServer` (#7…
Updating Branch
…ipeline_parallel.py
Hi @DarkLight1337 , I don't have the instance for testing it right now, It might take me a day or two, For now I have added the InternVL2-8B in tests/distributed/test_pipeline_parallel.py for testing in Multi-Node Multi-GPU setup, If anyone is willing to test it out feel free to do so. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Some more comments.
@youkaichao I am not that familiar with implementing PP, so it would be great if you could take a look as well!
@Manikandan-Thangaraj-ZS0321 I ran the added test and seems that the test is broken: ================================================================ test session starts =================================================================
platform linux -- Python 3.10.14, pytest-8.3.2, pluggy-1.5.0 -- /opt/conda/envs/vllm/bin/python3.10
cachedir: .pytest_cache
rootdir: /kaggle/working/vllm
configfile: pyproject.toml
plugins: asyncio-0.24.0, buildkite-test-collector-0.1.8, forked-1.6.0, anyio-4.4.0, rerunfailures-14.0, shard-0.1.2, typeguard-4.3.0
asyncio: mode=strict, default_loop_scope=None
collected 1 item
Running 1 items in this shard: tests/distributed/test_pipeline_parallel.py::test_compare_tp[1-2-1-1-OpenGVLab/InternVL2-8B-ray]
tests/distributed/test_pipeline_parallel.py::test_compare_tp[1-2-1-1-OpenGVLab/InternVL2-8B-ray] Fork a new process to run a test 12370
Fork a new process to run a test 0
WARNING 08-27 07:17:35 config.py:1604] Casting torch.bfloat16 to torch.float16.
INFO 08-27 07:17:35 config.py:952] Chunked prefill is enabled with max_num_batched_tokens=512.
WARNING 08-27 07:17:35 config.py:329] Async output processing can not be enabled with pipeline parallel
INFO 08-27 07:17:36 weight_utils.py:236] Using model weights format ['*.safetensors']
Error in sitecustomize; set PYTHONVERBOSE for traceback:
ModuleNotFoundError: No module named 'google.auth'
INFO 08-27 07:17:41 api_server.py:440] vLLM API server version 0.5.5
INFO 08-27 07:17:41 api_server.py:441] args: Namespace(model_tag='OpenGVLab/InternVL2-8B', host=None, port=35627, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, model='OpenGVLab/InternVL2-8B', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, download_dir=None, load_format='auto', dtype='float16', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend='ray', worker_use_ray=False, pipeline_parallel_size=2, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=True, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, scheduler_delay_factor=0.0, enable_chunked_prefill=True, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, engine_use_ray=False, disable_log_requests=False, max_log_len=None, dispatch_function=<function serve at 0x78e4e28445e0>)
INFO 08-27 07:17:42 api_server.py:144] Multiprocessing frontend to use ipc:///tmp/09a4cf66-d98d-4947-b94c-039baf52dd20 for RPC Path.
INFO 08-27 07:17:42 api_server.py:161] Started engine process with PID 12450
Error in sitecustomize; set PYTHONVERBOSE for traceback:
ModuleNotFoundError: No module named 'google.auth'
Error in sitecustomize; set PYTHONVERBOSE for traceback:
ModuleNotFoundError: No module named 'google.auth'
WARNING 08-27 07:17:47 config.py:1604] Casting torch.bfloat16 to torch.float16.
INFO 08-27 07:17:47 config.py:952] Chunked prefill is enabled with max_num_batched_tokens=512.
WARNING 08-27 07:17:47 config.py:329] Async output processing can not be enabled with pipeline parallel
2024-08-27 07:17:50,021 INFO worker.py:1781 -- Started a local Ray instance.
INFO 08-27 07:17:51 llm_engine.py:198] Initializing an LLM engine (v0.5.5) with config: model='OpenGVLab/InternVL2-8B', speculative_config=None, tokenizer='OpenGVLab/InternVL2-8B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.float16, max_seq_len=65536, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=2, disable_custom_all_reduce=False, quantization=None, enforce_eager=True, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=OpenGVLab/InternVL2-8B, use_v2_block_manager=False, num_scheduler_steps=1, enable_prefix_caching=False, use_async_output_proc=False)
WARNING 08-27 07:17:52 tokenizer.py:137] Using a slow tokenizer. This might cause a significant slowdown. Consider using a fast tokenizer instead.
generation_config.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████| 115/115 [00:00<00:00, 652kB/s]
INFO 08-27 07:17:52 ray_gpu_executor.py:133] use_ray_spmd_worker: False
(raylet) Error in sitecustomize; set PYTHONVERBOSE for traceback:
(raylet) ModuleNotFoundError: No module named 'google.auth'
INFO 08-27 07:18:02 selector.py:217] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.
INFO 08-27 07:18:02 selector.py:116] Using XFormers backend.
(RayWorkerWrapper pid=12986) INFO 08-27 07:18:02 selector.py:217] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.
(RayWorkerWrapper pid=12986) INFO 08-27 07:18:02 selector.py:116] Using XFormers backend.
/opt/conda/envs/vllm/lib/python3.10/site-packages/xformers/ops/fmha/flash.py:211: FutureWarning: `torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.
@torch.library.impl_abstract("xformers_flash::flash_fwd")
(RayWorkerWrapper pid=12986) /opt/conda/envs/vllm/lib/python3.10/site-packages/xformers/ops/fmha/flash.py:211: FutureWarning: `torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.
(RayWorkerWrapper pid=12986) @torch.library.impl_abstract("xformers_flash::flash_fwd")
(raylet) Error in sitecustomize; set PYTHONVERBOSE for traceback:
(raylet) ModuleNotFoundError: No module named 'google.auth'
/opt/conda/envs/vllm/lib/python3.10/site-packages/xformers/ops/fmha/flash.py:344: FutureWarning: `torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.
@torch.library.impl_abstract("xformers_flash::flash_bwd")
(RayWorkerWrapper pid=12986) /opt/conda/envs/vllm/lib/python3.10/site-packages/xformers/ops/fmha/flash.py:344: FutureWarning: `torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.
(RayWorkerWrapper pid=12986) @torch.library.impl_abstract("xformers_flash::flash_bwd")
INFO 08-27 07:18:05 utils.py:975] Found nccl from library libnccl.so.2
INFO 08-27 07:18:05 pynccl.py:63] vLLM is using nccl==2.20.5
(RayWorkerWrapper pid=12986) INFO 08-27 07:18:05 utils.py:975] Found nccl from library libnccl.so.2
(RayWorkerWrapper pid=12986) INFO 08-27 07:18:05 pynccl.py:63] vLLM is using nccl==2.20.5
INFO 08-27 07:18:05 model_runner.py:880] Starting to load model OpenGVLab/InternVL2-8B...
(RayWorkerWrapper pid=12986) INFO 08-27 07:18:05 model_runner.py:880] Starting to load model OpenGVLab/InternVL2-8B...
INFO 08-27 07:18:06 selector.py:217] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.
INFO 08-27 07:18:06 selector.py:116] Using XFormers backend.
(RayWorkerWrapper pid=12986) INFO 08-27 07:18:06 selector.py:217] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.
(RayWorkerWrapper pid=12986) INFO 08-27 07:18:06 selector.py:116] Using XFormers backend.
INFO 08-27 07:18:06 weight_utils.py:236] Using model weights format ['*.safetensors']
(RayWorkerWrapper pid=12986) INFO 08-27 07:18:06 weight_utils.py:236] Using model weights format ['*.safetensors']
Loading safetensors checkpoint shards: 0% Completed | 0/4 [00:00<?, ?it/s]
Loading safetensors checkpoint shards: 50% Completed | 2/4 [00:00<00:00, 15.49it/s]
Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:00<00:00, 4.72it/s]
Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:00<00:00, 5.26it/s]
INFO 08-27 07:18:52 model_runner.py:891] Loading model weights took 8.5596 GB
WARNING 08-27 07:19:04 model_runner.py:1058] Computed max_num_seqs (min(256, 512 // 3328)) to be less than 1. Setting it to the minimum value of 1.
(RayWorkerWrapper pid=12986) INFO 08-27 07:19:04 model_runner.py:891] Loading model weights took 8.5596 GB
(RayWorkerWrapper pid=12986) WARNING 08-27 07:19:04 model_runner.py:1058] Computed max_num_seqs (min(256, 512 // 3328)) to be less than 1. Setting it to the minimum value of 1.
WARNING 08-27 07:19:05 tokenizer.py:137] Using a slow tokenizer. This might cause a significant slowdown. Consider using a fast tokenizer instead.
(RayWorkerWrapper pid=12986) WARNING 08-27 07:19:05 tokenizer.py:137] Using a slow tokenizer. This might cause a significant slowdown. Consider using a fast tokenizer instead.
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] Error executing method determine_num_available_blocks. This might cause deadlock in distributed execution.
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] Traceback (most recent call last):
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/worker/worker_base.py", line 457, in execute_method
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return executor(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return func(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/worker/worker.py", line 222, in determine_num_available_blocks
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] self.model_runner.profile_run()
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return func(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/worker/model_runner.py", line 1098, in profile_run
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] self.execute_model(model_input, kv_caches, intermediate_tensors)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return func(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/worker/model_runner.py", line 1420, in execute_model
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] hidden_or_intermediate_states = model_executable(
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/model_executor/models/internvl.py", line 468, in forward
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] hidden_states = self.language_model.model(input_ids,
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/model_executor/models/internlm2.py", line 263, in forward
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] hidden_states, residual = layer(
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/model_executor/models/internlm2.py", line 199, in forward
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] hidden_states = self.attention(
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/model_executor/models/internlm2.py", line 145, in forward
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/opt/conda/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/attention/layer.py", line 98, in forward
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] return self.impl.forward(query,
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] File "/kaggle/working/vllm/vllm/attention/backends/xformers.py", line 574, in forward
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] assert key.shape[0] == num_prefill_tokens + num_decode_tokens
(RayWorkerWrapper pid=12986) ERROR 08-27 07:19:07 worker_base.py:465] AssertionError I'm not familiar with the pp implementation, so I'm not sure if it's related to the pp implementation for internlm2 backbone. |
Updating Branch
cc @andoorve |
@DarkLight1337 @Isotr0py @andoorve , Can you review it now?. I also found out issue in (buildkite/fastcheck/pr/amd-docker-build-image)CI docker image build - docker build --build-arg max_jobs=16 --tag -f Dockerfile.rocm --progress plain . && docker push - tag name is missing in it, the build is failing because of that |
Anything Pending on my end to fix? |
Can you merge the latest changes from main so that the CI can be run again? |
Updating Branch
To avoid OOM, it may be necessary to also use tensor parallel to split the model across GPUs. |
I have increased the TP_SIZE from 1 to 2, let's check on that |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
PP tests finally pass now. Thanks for implementing this!
Thanks a lot @DarkLight1337 and Everyone, Happy to contribute for this 😄 |
…elism) (vllm-project#7860) Signed-off-by: Alvant <[email protected]>
…elism) (vllm-project#7860) Signed-off-by: LeiWang1999 <[email protected]>
FILL IN THE PR DESCRIPTION HERE
Hi Folks, This PR is completed based on the 7168. This @andoorve PR includes the changes needed for the Add remaining model PP support, This PR 7168 appears to be out of date and lacks the most recent changes.
From the PR, I have included the changes needed for only InternVL2 model based upon the Architecture InternVLChatModel. On Including these changes I have been able to perform Distributed Inference and Serving for the InternVL2-8B on Multi-Node Multi-GPU (tensor parallel plus pipeline parallel inference) setup. However I am facing issue on running the InternVL2-26B and InternVL2-40B. This issue that I am facing is
'''
File "/usr/local/lib/python3.10/dist-packages/vllm/transformers_utils/tokenizer_group/tokenizer_group.py", line 23, in init │·······
self.tokenizer = get_tokenizer(self.tokenizer_id, **tokenizer_config) │·······
File "/usr/local/lib/python3.10/dist-packages/vllm/transformers_utils/tokenizer.py", line 103, in get_tokenizer │·······
tokenizer = AutoTokenizer.from_pretrained( │·······
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/tokenization_auto.py", line 913, in from_pretrained │·······
tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] │·······
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py", line 732, in getitem │·······
model_type = self._reverse_config_mapping[key.name] │·······
KeyError: 'InternVLChatConfig'
'''
Does anyone have any idea in this please let me know, what should I change in these
Partial fix to #7684
BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE
PR Checklist (Click to Expand)
Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.
PR Title and Classification
Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:
[Bugfix]
for bug fixes.[CI/Build]
for build or continuous integration improvements.[Doc]
for documentation fixes and improvements.[Model]
for adding a new model or improving an existing model. Model name should appear in the title.[Frontend]
For changes on the vLLM frontend (e.g., OpenAI API server,LLM
class, etc.)[Kernel]
for changes affecting CUDA kernels or other compute kernels.[Core]
for changes in the core vLLM logic (e.g.,LLMEngine
,AsyncLLMEngine
,Scheduler
, etc.)[Hardware][Vendor]
for hardware-specific changes. Vendor name should appear in the prefix (e.g.,[Hardware][AMD]
).[Misc]
for PRs that do not fit the above categories. Please use this sparingly.Note: If the PR spans more than one category, please include all relevant prefixes.
Code Quality
The PR need to meet the following code quality standards:
format.sh
to format your code.docs/source/
if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.Notes for Large Changes
Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with
rfc-required
and might not go through the PR.What to Expect for the Reviews
The goal of the vLLM team is to be a transparent reviewing machine. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process:
action-required
label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.Thank You
Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone!