This project implements a face recognition system using Python libraries. It leverages:
- OpenCV: For face detection and recognition tasks.
- NumPy: For numerical computations during feature extraction.
- SQLite3: For efficient storage of facial data.
This system has potential applications in areas like security access control, user identification, and personalized experiences.
- Detects faces in images or video streams.
- Recognizes faces based on pre-populated facial data stored in an SQLite3 database.
- Offers accuracy depending on the size and quality of the training dataset.
-
Clone this repository:
git clone https://github.com/<username>/Face-Recognition-with-SQLite3-and-NumPy.git cd Face-Recognition-with-SQLite3-and-NumPy
-
Install dependencies:
pip install -r requirements.txt
- Place your facial images in the
data/raw_data
directory. (Consider organizing them by name or another identifier) - Run the script
python src/data_processing.py
(or a similar script if you have one) to pre-process the data (resizing, normalization, etc.) if needed.
- Run the script
python src/train_model.py
(or a similar script if you have one) to train the face recognition model on your pre-processed data.
- Run the script
python src/main.py
(or a similar script) to perform face recognition using the trained model. - Optional: Customize
src/main.py
to specify arguments for video input, confidence thresholds, etc.
face_recognition_project/ ├── data/ │ ├── raw_data/ # Raw facial image files │ └── processed_data/ # Pre-processed data files ├── src/ │ ├── init.py # Makes src a Python package │ ├── main.py # Main script for running the project │ ├── database.py # Functions related to database interaction │ ├── face_recognition.py # Functions related to face detection and recognition │ ├── utils.py # Utility functions │ └── data_processing.py # Data processing script (if needed) │ └── train_model.py # Model training script (if needed) ├── models/ # Trained models and related files ├── requirements.txt # List of project dependencies ├── README.md # Project documentation (This file) ├── LICENSE # License for using the project ├── .gitignore # Files to exclude from version control └── setup.py # Script for packaging and installing the project (Optional)
+--------------+ +--------------+
| Raw Images | | Pre-processed |
+--------------+ +--------------+
|
v
+--------------+ +--------------+
| Feature | | SQLite3 |
| Extraction | | Database |
+--------------+ +--------------+
|
v
+--------------+ +--------------+
| Recognition | | Identified |
| Algorithm | | User |
+--------------+ +--------------+
## Dependencies
- `opencv-python`
- `numpy`
- `sqlite3`
- (List any other required libraries)
### Version Compatibility
Consider mentioning specific versions of libraries if compatibility is critical.
## Contributing
We welcome contributions to improve this project! Please refer to the `CONTRIBUTING.md` file (if you choose to create one) for guidelines.
## Security Considerations
Be mindful of security when storing facial data. Consider encryption and responsible data handling practices.
## Testing
Thoroughly test the project locally before deploying it to ensure functionality.
## License
This project is licensed under the MIT License - see the LICENSE file for details.
---
This README provides a clear overview of your project, its functionalities, usage instructions, and structure, making it easy for users to understand and contribute. Remember to replace placeholders like `<username>` with your actual information.
opencv-python
numpy
sqlite3
__pycache__/
*.pyc
data/raw_data/
data/processed_data/
models/
from setuptools import setup, find_packages
setup(
name='face_recognition_project',
version='0.1',
packages=find_packages(),
install_requires=[
'opencv-python',
'numpy',
'sqlite3'
],
entry_points={
'console_scripts': [
'face_recognition=src.main:main',
],
},
)
# Initialize the src package
import numpy as np
import sqlite3
import cv2
from src.database import init_db, add_face_data, get_face_data
from src.face_recognition import detect_faces, recognize_faces
def main():
# Initialize database
db_connection = init_db()
# Add example face data
example_face_data = np.random.rand(128)
add_face_data(db_connection, 'John Doe', example_face_data)
# Retrieve face data
face_data = get_face_data(db_connection, 'John Doe')
print(f"Retrieved face data for John Doe: {face_data}")
# Perform face recognition
recognize_faces(example_face_data, face_data)
if __name__ == "__main__":
main()
import sqlite3
import numpy as np
def init_db():
conn = sqlite3.connect('face_recognition.db')
cursor = conn.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS faces
(id INTEGER PRIMARY KEY, name TEXT, data BLOB)''')
conn.commit()
return conn
def add_face_data(conn, name, data):
cursor = conn.cursor()
cursor.execute('''INSERT INTO faces (name, data) VALUES (?, ?)''', (name, data.tobytes()))
conn.commit()
def get_face_data(conn, name):
cursor = conn.cursor()
cursor.execute('''SELECT data FROM faces WHERE name = ?''', (name,))
data = cursor.fetchone()
if data:
return np.frombuffer(data[0], dtype=np.float64)
return None
import cv2
import numpy as np
def detect_faces(image):
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
return faces
def recognize_faces(input_face_data, known_face_data):
distance = np.linalg.norm(input_face_data - known_face_data)
if distance < 0.6:
print("Face recognized!")
else:
print("Face not recognized.")
# Utility functions can be added here if needed