Skip to content

Add Docker Image #4

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Jan 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 37 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
FROM pytorch/pytorch:2.2.1-cuda11.8-cudnn8-runtime

LABEL authors="Colby T. Ford <[email protected]>"

## Install system requirements
RUN apt update && \
apt-get install -y --reinstall \
ca-certificates && \
apt install -y \
git \
wget \
libxml2 \
libgl-dev \
libgl1 \
gcc \
g++

## Set working directory
RUN mkdir -p /software/flowdock
WORKDIR /software/flowdock

## Clone project
RUN git clone https://github.com/BioinfoMachineLearning/FlowDock /software/flowdock

## Create conda environment
# RUN conda env create -f environments/flowdock_environment.yaml
COPY environments/flowdock_environment_docker.yaml /software/flowdock/environments/flowdock_environment_docker.yaml
RUN conda env create -f environments/flowdock_environment_docker.yaml

## Automatically activate conda environment
RUN echo "source activate flowdock" >> /etc/profile.d/conda.sh && \
echo "source /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc && \
echo "conda activate flowdock" >> ~/.bashrc

## Default shell and command
SHELL ["/bin/bash", "-l", "-c"]
CMD ["/bin/bash"]
28 changes: 28 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ This is the official codebase of the paper
- [How to create comparative plots of evaluation results](#how-to-create-comparative-plots-of-evaluation-results)
- [How to predict new protein-ligand complex structures and their affinities using FlowDock](#how-to-predict-new-protein-ligand-complex-structures-using-flowdock)
- [For developers](#for-developers)
- [Docker](#docker)
- [Acknowledgements](#acknowledgements)
- [License](#license)
- [Citing this work](#citing-this-work)
Expand Down Expand Up @@ -384,6 +385,33 @@ rm env.yaml # clean up temporary environment file

</details>

## Docker

<details>

Given that this tool has a number of dependencies, it may be easier to run it in a Docker container.

Pull from [Docker Hub](https://hub.docker.com/repository/docker/cford38/flowdock): `docker pull cford38/flowdock:latest`



Alternatively, build the Docker image locally:

```bash
docker build --platform linux/amd64 -t flowdock .
```

Then, run the Docker container (and mount your local `checkpoints/` directory)

```bash
docker run --gpus all -v ./checkpoints:/software/flowdock/checkpoints --rm --name flowdock -it flowdock /bin/bash

# docker run --gpus all -v ./checkpoints:/software/flowdock/checkpoints --rm --name flowdock -it cford38/flowdock:latest /bin/bash
```

</details>


## Acknowledgements

`FlowDock` builds upon the source code and data from the following projects:
Expand Down
50 changes: 50 additions & 0 deletions environments/flowdock_environment_docker.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
name: flowdock
channels:
- pyg
- iopath
- pytorch
- nvidia
- defaults
- conda-forge
dependencies:
- hydra-core=1.3.2=pyhd8ed1ab_0
- mendeleev=0.15.0=pyhc1e730c_0
- msgpack-python=1.0.3=py39hd09550d_0
- networkx=3.1=py39h06a4308_0
- omegaconf=2.3.0=pyhd8ed1ab_0
- pandas=2.1.4=py39h1128e8f_0
- python=3.9.17=h0755675_0_cpython
- pytorch=2.2.1=py3.9_cuda11.8_cudnn8.7.0_0
- pytorch-cuda=11.8=h7e8668a_5
- pytorch-mutex=1.0=cuda
- pytorch-scatter=2.1.2=py39_torch_2.2.0_cu118
- rdkit=2024.03.1=py39h6cc1c65_0
- rich=13.3.5=py39h06a4308_0
- scikit-learn=1.4.1.post1=py39ha22ef79_0
- scipy=1.12.0=py39h474f0d3_2
- torchaudio=2.2.1=py39_cu118
- torchtriton=2.2.0=py39
- torchvision=0.17.1=py39_cu118
- tqdm=4.66.1=pyhd8ed1ab_0
- pip:
- beartype==0.17.2
- biopandas==0.4.1
- biopython>=1.79
- dm-tree==0.1.8
- einops==0.7.0
- fair-esm==2.0.0
- hydra-colorlog==1.2.0
- lightning==2.2.2
- lightning-utilities==0.11.1
- lovely-numpy==0.2.11
- lovely-tensors==0.1.15
- ml-collections==0.1.1
- msgpack-numpy==0.4.8
- numpy==1.23.5
- git+https://github.com/amorehead/openfold.git@fe1275099639bf7e617e09ef24d6af778647dd64
- prody==2.4.1
- pytorch-lightning==2.2.2
- git+https://github.com/facebookresearch/pytorch3d.git@3da7703c5ac10039645966deddffe8db52eab8c5
- rootutils==1.0.7
- torchmetrics==1.3.1
- wandb==0.17.0