Skip to content

[Metrics] Add input/output token and request size metrics #214

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jan 25, 2025
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pkg/ext-proc/handlers/response.go
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ func (s *Server) HandleResponseBody(reqCtx *RequestContext, req *extProcPb.Proce
return nil, fmt.Errorf("unmarshaling response body: %v", err)
}
reqCtx.Response = res
reqCtx.ResponseSize = len(body.ResponseBody.Body)
// ResponseComplete is to indicate the response is complete. In non-streaming
// case, it will be set to be true once the response is processed; in
// streaming case, it will be set to be true once the last chunk is processed.
Expand Down
4 changes: 4 additions & 0 deletions pkg/ext-proc/handlers/server.go
Original file line number Diff line number Diff line change
Expand Up @@ -95,6 +95,9 @@ func (s *Server) Process(srv extProcPb.ExternalProcessor_ProcessServer) error {
if err == nil && reqCtx.ResponseComplete {
reqCtx.ResponseCompleteTimestamp = time.Now()
metrics.RecordRequestLatencies(reqCtx.Model, reqCtx.ResolvedTargetModel, reqCtx.RequestReceivedTimestamp, reqCtx.ResponseCompleteTimestamp)
metrics.RecordResponseSizes(reqCtx.Model, reqCtx.ResolvedTargetModel, reqCtx.ResponseSize)
metrics.RecordInputTokens(reqCtx.Model, reqCtx.ResolvedTargetModel, reqCtx.Response.Usage.PromptTokens)
metrics.RecordOutputTokens(reqCtx.Model, reqCtx.ResolvedTargetModel, reqCtx.Response.Usage.CompletionTokens)
}
klog.V(3).Infof("Request context after HandleResponseBody: %+v", reqCtx)
default:
Expand Down Expand Up @@ -138,5 +141,6 @@ type RequestContext struct {
ResponseCompleteTimestamp time.Time
RequestSize int
Response Response
ResponseSize int
ResponseComplete bool
}
38 changes: 35 additions & 3 deletions pkg/ext-proc/metrics/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,45 @@ This documentation is the current state of exposed metrics.
* [Exposed Metrics](#exposed-metrics)
* [Scrape Metrics](#scrape-metrics)

## Requirements

NOTE: Response metrics are only supported in non-streaming mode, with the follow up [issue](https://github.com/kubernetes-sigs/gateway-api-inference-extension/issues/178) to address streaming mode.

Currently you have 2 options:
- If you use response streaming, simply leave the response body processing mode empty in your `EnvoyExtensionPolicy` (default). You won't get response metrics reporting.

- If you don't use streaming, to enable response metrics reporting, you can enable `Buffered` mode for response in `EnvoyExtensionPolicy`.

```
apiVersion: gateway.envoyproxy.io/v1alpha1
kind: EnvoyExtensionPolicy
metadata:
name: ext-proc-policy
namespace: default
spec:
extProc:
- backendRefs:
- group: ""
kind: Service
name: inference-gateway-ext-proc
port: 9002
processingMode:
request:
body: Buffered
response:
body: Buffered
```

## Exposed metrics

| Metric name | Metric Type | Description | Labels | Status |
| ------------|--------------| ----------- | ------ | ------ |
| inference_model_request_total | Counter | The counter of requests broken out for each model. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; ` | ALPHA |
| inference_model_request_duration_seconds | Distribution | Distribution of response latency. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; ` | ALPHA |
| inference_model_request_duration_seconds | Distribution | Distribution of response latency. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; ` | ALPHA |
| inference_model_request_total | Counter | The counter of requests broken out for each model. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; | ALPHA |
| inference_model_request_duration_seconds | Distribution | Distribution of response latency. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; | ALPHA |
| inference_model_request_sizes | Distribution | Distribution of request size in bytes. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; | ALPHA |
| inference_model_response_sizes | Distribution | Distribution of response size in bytes. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; | ALPHA |
| inference_model_input_tokens | Distribution | Distribution of input token count. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; | ALPHA |
| inference_model_output_tokens | Distribution | Distribution of output token count. | `model_name`=&lt;model-name&gt; <br> `target_model_name`=&lt;target-model-name&gt; | ALPHA |

## Scrape Metrics

Expand Down
59 changes: 59 additions & 0 deletions pkg/ext-proc/metrics/metrics.go
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,43 @@ var (
},
[]string{"model_name", "target_model_name"},
)

responseSizes = compbasemetrics.NewHistogramVec(
&compbasemetrics.HistogramOpts{
Subsystem: InferenceModelComponent,
Name: "response_sizes",
Help: "Inference model responses size distribution in bytes for each model and target model.",
// Most models have a response token < 8192 tokens. Each token, in average, has 4 characters.
// 8192 * 4 = 32768.
Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32778, 65536},
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)

inputTokens = compbasemetrics.NewHistogramVec(
&compbasemetrics.HistogramOpts{
Subsystem: InferenceModelComponent,
Name: "input_tokens",
Help: "Inference model input token count distribution for requests in each model.",
// Most models have a input context window less than 1 million tokens.
Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32778, 65536, 131072, 262144, 524288, 1048576},
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)

outputTokens = compbasemetrics.NewHistogramVec(
&compbasemetrics.HistogramOpts{
Subsystem: InferenceModelComponent,
Name: "output_tokens",
Help: "Inference model output token count distribution for requests in each model.",
// Most models generates output less than 8192 tokens.
Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192},
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)
)

var registerMetrics sync.Once
Expand All @@ -61,6 +98,9 @@ func Register() {
legacyregistry.MustRegister(requestCounter)
legacyregistry.MustRegister(requestLatencies)
legacyregistry.MustRegister(requestSizes)
legacyregistry.MustRegister(responseSizes)
legacyregistry.MustRegister(inputTokens)
legacyregistry.MustRegister(outputTokens)
})
}

Expand All @@ -84,3 +124,22 @@ func RecordRequestLatencies(modelName, targetModelName string, received time.Tim
requestLatencies.WithLabelValues(modelName, targetModelName).Observe(elapsedSeconds)
return true
}

// RecordResponseSizes records the response sizes.
func RecordResponseSizes(modelName, targetModelName string, size int) {
responseSizes.WithLabelValues(modelName, targetModelName).Observe(float64(size))
}

// RecordInputTokens records input tokens count.
func RecordInputTokens(modelName, targetModelName string, size int) {
if size > 0 {
inputTokens.WithLabelValues(modelName, targetModelName).Observe(float64(size))
}
}

// RecordOutputTokens records output tokens count.
func RecordOutputTokens(modelName, targetModelName string, size int) {
if size > 0 {
outputTokens.WithLabelValues(modelName, targetModelName).Observe(float64(size))
}
}
97 changes: 97 additions & 0 deletions pkg/ext-proc/metrics/metrics_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,9 @@ import (
const RequestTotalMetric = InferenceModelComponent + "_request_total"
const RequestLatenciesMetric = InferenceModelComponent + "_request_duration_seconds"
const RequestSizesMetric = InferenceModelComponent + "_request_sizes"
const ResponseSizesMetric = InferenceModelComponent + "_response_sizes"
const InputTokensMetric = InferenceModelComponent + "_input_tokens"
const OutputTokensMetric = InferenceModelComponent + "_output_tokens"

func TestRecordRequestCounterandSizes(t *testing.T) {
type requests struct {
Expand Down Expand Up @@ -160,3 +163,97 @@ func TestRecordRequestLatencies(t *testing.T) {
})
}
}

func TestRecordResponseMetrics(t *testing.T) {
type responses struct {
modelName string
targetModelName string
inputToken int
outputToken int
respSize int
}
scenarios := []struct {
name string
resp []responses
}{{
name: "multiple requests",
resp: []responses{
{
modelName: "m10",
targetModelName: "t10",
respSize: 1200,
inputToken: 10,
outputToken: 100,
},
{
modelName: "m10",
targetModelName: "t10",
respSize: 500,
inputToken: 20,
outputToken: 200,
},
{
modelName: "m10",
targetModelName: "t11",
respSize: 2480,
inputToken: 30,
outputToken: 300,
},
{
modelName: "m20",
targetModelName: "t20",
respSize: 80,
inputToken: 40,
outputToken: 400,
},
},
}}
Register()
for _, scenario := range scenarios {
t.Run(scenario.name, func(t *testing.T) {
for _, resp := range scenario.resp {
RecordInputTokens(resp.modelName, resp.targetModelName, resp.inputToken)
RecordOutputTokens(resp.modelName, resp.targetModelName, resp.outputToken)
RecordResponseSizes(resp.modelName, resp.targetModelName, resp.respSize)
}
wantResponseSize, err := os.Open("testdata/response_sizes_metric")
defer func() {
if err := wantResponseSize.Close(); err != nil {
t.Error(err)
}
}()
if err != nil {
t.Fatal(err)
}
if err := testutil.GatherAndCompare(legacyregistry.DefaultGatherer, wantResponseSize, ResponseSizesMetric); err != nil {
t.Error(err)
}

wantInputToken, err := os.Open("testdata/input_tokens_metric")
defer func() {
if err := wantInputToken.Close(); err != nil {
t.Error(err)
}
}()
if err != nil {
t.Fatal(err)
}
if err := testutil.GatherAndCompare(legacyregistry.DefaultGatherer, wantInputToken, InputTokensMetric); err != nil {
t.Error(err)
}

wantOutputToken, err := os.Open("testdata/output_tokens_metric")
defer func() {
if err := wantOutputToken.Close(); err != nil {
t.Error(err)
}
}()
if err != nil {
t.Fatal(err)
}
if err := testutil.GatherAndCompare(legacyregistry.DefaultGatherer, wantOutputToken, OutputTokensMetric); err != nil {
t.Error(err)
}
})
}
}
68 changes: 68 additions & 0 deletions pkg/ext-proc/metrics/testdata/input_tokens_metric
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# HELP inference_model_input_tokens [ALPHA] Inference model input token count distribution for requests in each model.
# TYPE inference_model_input_tokens histogram
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="1"} 0
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="8"} 0
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="16"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="32"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="64"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="128"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="256"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="512"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="1024"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="2048"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="4096"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="8192"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="16384"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="32778"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="65536"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="131072"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="262144"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="524288"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="1.048576e+06"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t10",le="+Inf"} 2
inference_model_input_tokens_sum{model_name="m10",target_model_name="t10"} 30
inference_model_input_tokens_count{model_name="m10",target_model_name="t10"} 2
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="1"} 0
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="8"} 0
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="16"} 0
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="32"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="64"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="128"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="256"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="512"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="1024"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="2048"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="4096"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="8192"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="16384"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="32778"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="65536"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="131072"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="262144"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="524288"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="1.048576e+06"} 1
inference_model_input_tokens_bucket{model_name="m10",target_model_name="t11",le="+Inf"} 1
inference_model_input_tokens_sum{model_name="m10",target_model_name="t11"} 30
inference_model_input_tokens_count{model_name="m10",target_model_name="t11"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="1"} 0
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="8"} 0
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="16"} 0
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="32"} 0
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="64"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="128"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="256"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="512"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="1024"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="2048"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="4096"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="8192"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="16384"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="32778"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="65536"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="131072"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="262144"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="524288"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="1.048576e+06"} 1
inference_model_input_tokens_bucket{model_name="m20",target_model_name="t20",le="+Inf"} 1
inference_model_input_tokens_sum{model_name="m20",target_model_name="t20"} 40
inference_model_input_tokens_count{model_name="m20",target_model_name="t20"} 1
Loading