Skip to content

REF: split out dtype-finding in concat_compat #53260

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
May 22, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
126 changes: 44 additions & 82 deletions pandas/core/dtypes/concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,21 +18,17 @@
common_dtype_categorical_compat,
find_common_type,
)
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
DatetimeTZDtype,
ExtensionDtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas.core.dtypes.generic import (
ABCCategoricalIndex,
ABCExtensionArray,
ABCSeries,
)

if TYPE_CHECKING:
from pandas._typing import (
ArrayLike,
AxisInt,
DtypeObj,
)

from pandas.core.arrays import (
Expand Down Expand Up @@ -100,45 +96,54 @@ def concat_compat(
# Creating an empty array directly is tempting, but the winnings would be
# marginal given that it would still require shape & dtype calculation and
# np.concatenate which has them both implemented is compiled.
orig = to_concat
non_empties = [x for x in to_concat if _is_nonempty(x, axis)]
if non_empties and axis == 0 and not ea_compat_axis:
# ea_compat_axis see GH#39574
to_concat = non_empties

dtypes = {obj.dtype for obj in to_concat}
kinds = {obj.dtype.kind for obj in to_concat}
contains_datetime = any(
isinstance(dtype, (np.dtype, DatetimeTZDtype)) and dtype.kind in "mM"
for dtype in dtypes
) or any(isinstance(obj, ABCExtensionArray) and obj.ndim > 1 for obj in to_concat)
any_ea, kinds, target_dtype = _get_result_dtype(to_concat, non_empties)

if len(to_concat) < len(orig):
_, _, alt_dtype = _get_result_dtype(orig, non_empties)

if target_dtype is not None:
to_concat = [astype_array(arr, target_dtype, copy=False) for arr in to_concat]

if not isinstance(to_concat[0], np.ndarray):
# i.e. isinstance(to_concat[0], ExtensionArray)
to_concat_eas = cast("Sequence[ExtensionArray]", to_concat)
cls = type(to_concat[0])
return cls._concat_same_type(to_concat_eas)
else:
to_concat_arrs = cast("Sequence[np.ndarray]", to_concat)
result = np.concatenate(to_concat_arrs, axis=axis)

if not any_ea and "b" in kinds and result.dtype.kind in "iuf":
# GH#39817 cast to object instead of casting bools to numeric
result = result.astype(object, copy=False)
return result

all_empty = not len(non_empties)
single_dtype = len(dtypes) == 1
any_ea = any(isinstance(x, ExtensionDtype) for x in dtypes)

if contains_datetime:
return _concat_datetime(to_concat, axis=axis)
def _get_result_dtype(
to_concat: Sequence[ArrayLike], non_empties: Sequence[ArrayLike]
) -> tuple[bool, set[str], DtypeObj | None]:
target_dtype = None

dtypes = {obj.dtype for obj in to_concat}
kinds = {obj.dtype.kind for obj in to_concat}

any_ea = any(not isinstance(x, np.ndarray) for x in to_concat)
if any_ea:
# i.e. any ExtensionArrays

# we ignore axis here, as internally concatting with EAs is always
# for axis=0
if not single_dtype:
if len(dtypes) != 1:
target_dtype = find_common_type([x.dtype for x in to_concat])
target_dtype = common_dtype_categorical_compat(to_concat, target_dtype)
to_concat = [
astype_array(arr, target_dtype, copy=False) for arr in to_concat
]

if isinstance(to_concat[0], ABCExtensionArray):
# TODO: what about EA-backed Index?
to_concat_eas = cast("Sequence[ExtensionArray]", to_concat)
cls = type(to_concat[0])
return cls._concat_same_type(to_concat_eas)
else:
to_concat_arrs = cast("Sequence[np.ndarray]", to_concat)
return np.concatenate(to_concat_arrs)

elif all_empty:
elif not len(non_empties):
# we have all empties, but may need to coerce the result dtype to
# object if we have non-numeric type operands (numpy would otherwise
# cast this to float)
Expand All @@ -148,17 +153,16 @@ def concat_compat(
pass
else:
# coerce to object
to_concat = [x.astype("object") for x in to_concat]
target_dtype = np.dtype(object)
kinds = {"o"}
else:
# Argument 1 to "list" has incompatible type "Set[Union[ExtensionDtype,
# Any]]"; expected "Iterable[Union[dtype[Any], None, Type[Any],
# _SupportsDType[dtype[Any]], str, Tuple[Any, Union[SupportsIndex,
# Sequence[SupportsIndex]]], List[Any], _DTypeDict, Tuple[Any, Any]]]"
target_dtype = np.find_common_type(list(dtypes), []) # type: ignore[arg-type]

# error: Argument 1 to "concatenate" has incompatible type
# "Sequence[Union[ExtensionArray, ndarray[Any, Any]]]"; expected
# "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]]]"
result: np.ndarray = np.concatenate(to_concat, axis=axis) # type: ignore[arg-type]
if "b" in kinds and result.dtype.kind in "iuf":
# GH#39817 cast to object instead of casting bools to numeric
result = result.astype(object, copy=False)
return result
return any_ea, kinds, target_dtype


def union_categoricals(
Expand Down Expand Up @@ -320,45 +324,3 @@ def _maybe_unwrap(x):

dtype = CategoricalDtype(categories=categories, ordered=ordered)
return Categorical._simple_new(new_codes, dtype=dtype)


def _concatenate_2d(to_concat: Sequence[np.ndarray], axis: AxisInt) -> np.ndarray:
# coerce to 2d if needed & concatenate
if axis == 1:
to_concat = [np.atleast_2d(x) for x in to_concat]
return np.concatenate(to_concat, axis=axis)


def _concat_datetime(to_concat: Sequence[ArrayLike], axis: AxisInt = 0) -> ArrayLike:
"""
provide concatenation of an datetimelike array of arrays each of which is a
single M8[ns], datetime64[ns, tz] or m8[ns] dtype
Parameters
----------
to_concat : sequence of arrays
axis : axis to provide concatenation
Returns
-------
a single array, preserving the combined dtypes
"""
from pandas.core.construction import ensure_wrapped_if_datetimelike

to_concat = [ensure_wrapped_if_datetimelike(x) for x in to_concat]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

also, could you explain why ensure_wrapped_if_datetimelike and atleast_2d are no longer needed here?

in general, for anything non-trivial, I'd really appreciate a comment explaining why you're making changes, else reviews can really take hours

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the not single_dtype case is irrelevant bc in that case we find_common_dtype and cast to it. The ensure_wrapped_if_datetimelike is unnecessary bc caller is responsible for ensuring we are wrapped where appropriate. The axis is unnecessary bc the axis=1 cases all go through the lib.dtypes_all_equal path at the top of concat_compat

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The axis is unnecessary bc the axis=1 cases all go through the lib.dtypes_all_equal path at the top of concat_compat

Not sure I follow, sorry - in test_append_new_columns, it reaches concat_compat with axis=1 but it doesn't go through the # fastpath! path at the top of concat_compat

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

test_append_new_columns doesnt have any datetime columns, so wouldn't go through _concat_datetime. Should have been clearer thats what i was referring to.


single_dtype = lib.dtypes_all_equal([x.dtype for x in to_concat])

# multiple types, need to coerce to object
if not single_dtype:
# ensure_wrapped_if_datetimelike ensures that astype(object) wraps
# in Timestamp/Timedelta
return _concatenate_2d([x.astype(object) for x in to_concat], axis=axis)

# error: Unexpected keyword argument "axis" for "_concat_same_type" of
# "ExtensionArray"
to_concat_eas = cast("list[ExtensionArray]", to_concat)
result = type(to_concat_eas[0])._concat_same_type( # type: ignore[call-arg]
to_concat_eas, axis=axis
)
return result