Skip to content

Replace matplotlib seaborn style plots with Arviz Plots in Documentation #4563

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 56 additions & 28 deletions pymc3/distributions/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,8 @@ class Uniform(BoundedContinuous):

import matplotlib.pyplot as plt
import numpy as np
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-3, 3, 500)
ls = [0., -2]
us = [2., 1]
Expand Down Expand Up @@ -445,7 +446,8 @@ class Normal(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-5, 5, 1000)
mus = [0., 0., 0., -2.]
sigmas = [0.4, 1., 2., 0.4]
Expand Down Expand Up @@ -591,7 +593,8 @@ class TruncatedNormal(BoundedContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-10, 10, 1000)
mus = [0., 0., 0.]
sigmas = [3.,5.,7.]
Expand Down Expand Up @@ -809,7 +812,8 @@ class HalfNormal(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 5, 200)
for sigma in [0.4, 1., 2.]:
pdf = st.halfnorm.pdf(x, scale=sigma)
Expand Down Expand Up @@ -949,7 +953,8 @@ class Wald(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 3, 500)
mus = [1., 1., 1., 3.]
lams = [1., .2, 3., 1.]
Expand Down Expand Up @@ -1169,7 +1174,8 @@ class Beta(UnitContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 1, 200)
alphas = [.5, 5., 1., 2., 2.]
betas = [.5, 1., 3., 2., 5.]
Expand Down Expand Up @@ -1347,7 +1353,8 @@ class Kumaraswamy(UnitContinuous):

import matplotlib.pyplot as plt
import numpy as np
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 1, 200)
a_s = [.5, 5., 1., 2., 2.]
b_s = [.5, 1., 3., 2., 5.]
Expand Down Expand Up @@ -1453,7 +1460,8 @@ class Exponential(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 3, 100)
for lam in [0.5, 1., 2.]:
pdf = st.expon.pdf(x, scale=1.0/lam)
Expand Down Expand Up @@ -1566,7 +1574,8 @@ class Laplace(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-10, 10, 1000)
mus = [0., 0., 0., -5.]
bs = [1., 2., 4., 4.]
Expand Down Expand Up @@ -1794,7 +1803,8 @@ class Lognormal(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 3, 100)
mus = [0., 0., 0.]
sigmas = [.25, .5, 1.]
Expand Down Expand Up @@ -1951,7 +1961,8 @@ class StudentT(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-8, 8, 200)
mus = [0., 0., -2., -2.]
sigmas = [1., 1., 1., 2.]
Expand Down Expand Up @@ -2115,7 +2126,8 @@ class Pareto(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 4, 1000)
alphas = [1., 2., 5., 5.]
ms = [1., 1., 1., 2.]
Expand Down Expand Up @@ -2257,7 +2269,8 @@ class Cauchy(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-5, 5, 500)
alphas = [0., 0., 0., -2.]
betas = [.5, 1., 2., 1.]
Expand Down Expand Up @@ -2373,7 +2386,8 @@ class HalfCauchy(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 5, 200)
for b in [0.5, 1.0, 2.0]:
pdf = st.cauchy.pdf(x, scale=b)
Expand Down Expand Up @@ -2490,7 +2504,8 @@ class Gamma(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 20, 200)
alphas = [1., 2., 3., 7.5]
betas = [.5, .5, 1., 1.]
Expand Down Expand Up @@ -2654,7 +2669,8 @@ class InverseGamma(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 3, 500)
alphas = [1., 2., 3., 3.]
betas = [1., 1., 1., .5]
Expand Down Expand Up @@ -2823,7 +2839,8 @@ class ChiSquared(Gamma):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 15, 200)
for df in [1, 2, 3, 6, 9]:
pdf = st.chi2.pdf(x, df)
Expand Down Expand Up @@ -2868,7 +2885,8 @@ class Weibull(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 3, 200)
alphas = [.5, 1., 1.5, 5., 5.]
betas = [1., 1., 1., 1., 2]
Expand Down Expand Up @@ -3003,7 +3021,8 @@ class HalfStudentT(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 5, 200)
sigmas = [1., 1., 2., 1.]
nus = [.5, 1., 1., 30.]
Expand Down Expand Up @@ -3138,7 +3157,8 @@ class ExGaussian(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-6, 9, 200)
mus = [0., -2., 0., -3.]
sigmas = [1., 1., 3., 1.]
Expand Down Expand Up @@ -3319,7 +3339,8 @@ class VonMises(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-np.pi, np.pi, 200)
mus = [0., 0., 0., -2.5]
kappas = [.01, 0.5, 4., 2.]
Expand Down Expand Up @@ -3419,7 +3440,8 @@ class SkewNormal(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-4, 4, 200)
for alpha in [-6, 0, 6]:
pdf = st.skewnorm.pdf(x, alpha, loc=0, scale=1)
Expand Down Expand Up @@ -3554,7 +3576,8 @@ class Triangular(BoundedContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-2, 10, 500)
lowers = [0., -1, 2]
cs = [2., 0., 6.5]
Expand Down Expand Up @@ -3709,7 +3732,8 @@ class Gumbel(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-10, 20, 200)
mus = [0., 4., -1.]
betas = [2., 2., 4.]
Expand Down Expand Up @@ -3832,7 +3856,8 @@ class Rice(PositiveContinuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0, 8, 500)
nus = [0., 0., 4., 4.]
sigmas = [1., 2., 1., 2.]
Expand Down Expand Up @@ -3994,7 +4019,8 @@ class Logistic(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-5, 5, 200)
mus = [0., 0., 0., -2.]
ss = [.4, 1., 2., .4]
Expand Down Expand Up @@ -4116,7 +4142,8 @@ class LogitNormal(UnitContinuous):
import numpy as np
import scipy.stats as st
from scipy.special import logit
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(0.0001, 0.9999, 500)
mus = [0., 0., 0., 1.]
sigmas = [0.3, 1., 2., 1.]
Expand Down Expand Up @@ -4350,7 +4377,8 @@ class Moyal(Continuous):
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
plt.style.use('seaborn-darkgrid')
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-10, 20, 200)
mus = [-1., 0., 4.]
sigmas = [2., 2., 4.]
Expand Down
Loading